Electromagnetic (EM) body models designed to predict Radio-Frequency (RF) propagation are time-consuming methods which prevent their adoption in strict real-time computational imaging problems, such as human body localization and sensing. Physics-informed Generative Neural Network (GNN) models have been recently proposed to reproduce EM effects, namely to simulate or reconstruct missing data or samples by incorporating relevant EM principles and constraints. The paper discusses a Variational Auto-Encoder (VAE) model which is trained to reproduce the effects of human motions on the EM field and incorporate EM body diffraction principles. Proposed physics-informed generative neural network models are verified against both classical diffraction-based EM tools and full-wave EM body simulations.
Linear structural vector autoregressive models can be identified statistically without imposing restrictions on the model if the shocks are mutually independent and at most one of them is Gaussian. We show that this result extends to structural threshold and smooth transition vector autoregressive models incorporating a time-varying impact matrix defined as a weighted sum of the impact matrices of the regimes. We also discuss labelling of the shocks, maximum likelihood estimation of the parameters, and stationarity the model. The introduced methods are implemented to the accompanying R package sstvars. Our empirical application studies the effects of the climate policy uncertainty shock on the U.S. macroeconomy. In a structural logistic smooth transition vector autoregressive model consisting of two regimes, we find that a positive climate policy uncertainty shock decreases production in times of low economic policy uncertainty but slightly increases it in times of high economic policy uncertainty.
A Riemannian geometric framework for Markov chain Monte Carlo (MCMC) is developed where using the Fisher-Rao metric on the manifold of probability density functions (pdfs) informed proposal densities for Metropolis-Hastings (MH) algorithms are constructed. We exploit the square-root representation of pdfs under which the Fisher-Rao metric boils down to the standard $L^2$ metric on the positive orthant of the unit hypersphere. The square-root representation allows us to easily compute the geodesic distance between densities, resulting in a straightforward implementation of the proposed geometric MCMC methodology. Unlike the random walk MH that blindly proposes a candidate state using no information about the target, the geometric MH algorithms effectively move an uninformed base density (e.g., a random walk proposal density) towards different global/local approximations of the target density. We compare the proposed geometric MH algorithm with other MCMC algorithms for various Markov chain orderings, namely the covariance, efficiency, Peskun, and spectral gap orderings. The superior performance of the geometric algorithms over other MH algorithms like the random walk Metropolis, independent MH and variants of Metropolis adjusted Langevin algorithms is demonstrated in the context of various multimodal, nonlinear and high dimensional examples. In particular, we use extensive simulation and real data applications to compare these algorithms for analyzing mixture models, logistic regression models and ultra-high dimensional Bayesian variable selection models. A publicly available R package accompanies the article.
Federated Learning (FL) enables local devices to collaboratively learn a shared predictive model by only periodically sharing model parameters with a central aggregator. However, FL can be disadvantaged by statistical heterogeneity produced by the diversity in each local devices data distribution, which creates different levels of Independent and Identically Distributed (IID) data. Furthermore, this can be more complex when optimising different combinations of FL parameters and choosing optimal aggregation. In this paper, we present an empirical analysis of different FL training parameters and aggregators over various levels of statistical heterogeneity on three datasets. We propose a systematic data partition strategy to simulate different levels of statistical heterogeneity and a metric to measure the level of IID. Additionally, we empirically identify the best FL model and key parameters for datasets of different characteristics. On the basis of these, we present recommended guidelines for FL parameters and aggregators to optimise model performance under different levels of IID and with different datasets
We consider a convex constrained Gaussian sequence model and characterize necessary and sufficient conditions for the least squares estimator (LSE) to be optimal in a minimax sense. For a closed convex set $K\subset \mathbb{R}^n$ we observe $Y=\mu+\xi$ for $\xi\sim N(0,\sigma^2\mathbb{I}_n)$ and $\mu\in K$ and aim to estimate $\mu$. We characterize the worst case risk of the LSE in multiple ways by analyzing the behavior of the local Gaussian width on $K$. We demonstrate that optimality is equivalent to a Lipschitz property of the local Gaussian width mapping. We also provide theoretical algorithms that search for the worst case risk. We then provide examples showing optimality or suboptimality of the LSE on various sets, including $\ell_p$ balls for $p\in[1,2]$, pyramids, solids of revolution, and multivariate isotonic regression, among others.
Adversarial training methods commonly generate independent initial perturbation for adversarial samples from a simple uniform distribution, and obtain the training batch for the classifier without selection. In this work, we propose a simple yet effective training framework called Batch-in-Batch (BB) to enhance models robustness. It involves specifically a joint construction of initial values that could simultaneously generates $m$ sets of perturbations from the original batch set to provide more diversity for adversarial samples; and also includes various sample selection strategies that enable the trained models to have smoother losses and avoid overconfident outputs. Through extensive experiments on three benchmark datasets (CIFAR-10, SVHN, CIFAR-100) with two networks (PreActResNet18 and WideResNet28-10) that are used in both the single-step (Noise-Fast Gradient Sign Method, N-FGSM) and multi-step (Projected Gradient Descent, PGD-10) adversarial training, we show that models trained within the BB framework consistently have higher adversarial accuracy across various adversarial settings, notably achieving over a 13% improvement on the SVHN dataset with an attack radius of 8/255 compared to the N-FGSM baseline model. Furthermore, experimental analysis of the efficiency of both the proposed initial perturbation method and sample selection strategies validates our insights. Finally, we show that our framework is cost-effective in terms of computational resources, even with a relatively large value of $m$.
The goal of this paper is to provide a simple approach to perform local sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the loss function with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique SA-PNN which stands for sensitivity analysis in PINN. The effectiveness of the technique is shown using four examples: the first one is a simple one-dimensional advection-diffusion problem to show the methodology, the second is a two-dimensional Poisson's problem with nine parameters of interest, and the third and fourth examples are one and two-dimensional transient two-phase flow in porous media problem.
We present a dimension-incremental method for function approximation in bounded orthonormal product bases to learn the solutions of various differential equations. Therefore, we deconstruct the source function of the differential equation into parameters like Fourier or Spline coefficients and treat the solution of the differential equation as a high-dimensional function w.r.t. the spatial variables, these parameters and also further possible parameters from the differential equation itself. Finally, we learn this function in the sense of sparse approximation in a suitable function space by detecting coefficients of the basis expansion with largest absolute value. Investigating the corresponding indices of the basis coefficients yields further insights on the structure of the solution as well as its dependency on the parameters and their interactions and allows for a reasonable generalization to even higher dimensions and therefore better resolutions of the deconstructed source function.
Bayesian inference for survival regression modeling offers numerous advantages, especially for decision-making and external data borrowing, but demands the specification of the baseline hazard function, which may be a challenging task. We propose an alternative approach that does not need the specification of this function. Our approach combines pseudo-observations to convert censored data into longitudinal data with the Generalized Methods of Moments (GMM) to estimate the parameters of interest from the survival function directly. GMM may be viewed as an extension of the Generalized Estimating Equation (GEE) currently used for frequentist pseudo-observations analysis and can be extended to the Bayesian framework using a pseudo-likelihood function. We assessed the behavior of the frequentist and Bayesian GMM in the new context of analyzing pseudo-observations. We compared their performances to the Cox, GEE, and Bayesian piecewise exponential models through a simulation study of two-arm randomized clinical trials. Frequentist and Bayesian GMM gave valid inferences with similar performances compared to the three benchmark methods, except for small sample sizes and high censoring rates. For illustration, three post-hoc efficacy analyses were performed on randomized clinical trials involving patients with Ewing Sarcoma, producing results similar to those of the benchmark methods. Through a simple application of estimating hazard ratios, these findings confirm the effectiveness of this new Bayesian approach based on pseudo-observations and the generalized method of moments. This offers new insights on using pseudo-observations for Bayesian survival analysis.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.