The drive to develop artificial neural networks that efficiently utilize resources has generated significant interest in bio-inspired Spiking Neural Networks (SNNs). These networks are particularly attractive due to their potential in applications requiring low power and memory. This potential is further enhanced by the ability to perform online local learning, enabling them to adapt to dynamic environments. This requires the model to be adaptive in a self-supervised manner. While self-supervised learning has seen great success in many deep learning domains, its application for online local learning in multi-layer SNNs remains underexplored. In this paper, we introduce the "EchoSpike Predictive Plasticity" (ESPP) learning rule, a pioneering online local learning rule designed to leverage hierarchical temporal dynamics in SNNs through predictive and contrastive coding. We validate the effectiveness of this approach using benchmark datasets, demonstrating that it performs on par with current state-of-the-art supervised learning rules. The temporal and spatial locality of ESPP makes it particularly well-suited for low-cost neuromorphic processors, representing a significant advancement in developing biologically plausible self-supervised learning models for neuromorphic computing at the edge.
Training a deep neural network (DNN) requires substantial computational and memory requirements. It is common to use multiple devices to train a DNN to reduce the overall training time. There are several choices to parallelize each layer in a DNN. Exhaustively searching this list to find an optimal parallelization strategy is prohibitively time consuming and impractical. The standard practice is to use data parallelism because of its simplicity. However, data parallelism is often sub-optimal, and suffers from poor performance and high memory requirement. Expert-designed strategies have been proposed on a case-by-case basis using domain specific knowledge. These expert-designed strategies do not generalize well to DNNs other than the ones for which they were designed, and are not always necessarily the best choice. In this paper, we propose an approach to automatically find efficient parallelization strategies for DNNs from their computation graphs. We present an efficient algorithm to compute these strategies within a reasonable time in practice. We evaluate the effectiveness of our approach on various DNNs. We also compare the performance of the strategies identified by our approach against data parallelism, expert-designed strategies, and the state-of-the-art approaches. Our results show that the strategies found using our approach outperform the baseline data parallelism strategy in all the cases. In addition, our strategies achieve better performance than the expert-designed strategies and the state-of-the-art approaches.
Individual objects, whether users or services, within a specific region often exhibit similar network states due to their shared origin from the same city or autonomous system (AS). Despite this regional network similarity, many existing techniques overlook its potential, resulting in subpar performance arising from challenges such as data sparsity and label imbalance. In this paper, we introduce the regional-based dual latent state learning network(R2SL), a novel deep learning framework designed to overcome the pitfalls of traditional individual object-based prediction techniques in Quality of Service (QoS) prediction. Unlike its predecessors, R2SL captures the nuances of regional network behavior by deriving two distinct regional network latent states: the city-network latent state and the AS-network latent state. These states are constructed utilizing aggregated data from common regions rather than individual object data. Furthermore, R2SL adopts an enhanced Huber loss function that adjusts its linear loss component, providing a remedy for prevalent label imbalance issues. To cap off the prediction process, a multi-scale perception network is leveraged to interpret the integrated feature map, a fusion of regional network latent features and other pertinent information, ultimately accomplishing the QoS prediction. Through rigorous testing on real-world QoS datasets, R2SL demonstrates superior performance compared to prevailing state-of-the-art methods. Our R2SL approach ushers in an innovative avenue for precise QoS predictions by fully harnessing the regional network similarities inherent in objects.
Multiple access is the cornerstone technology for each generation of wireless cellular networks and resource allocation design plays a crucial role in multiple access. In this paper, we present a comprehensive tutorial overview for junior researchers in this field, aiming to offer a foundational guide for resource allocation design in the context of next-generation multiple access (NGMA). Initially, we identify three types of channels in future wireless cellular networks over which NGMA will be implemented, namely: natural channels, reconfigurable channels, and functional channels. Natural channels are traditional uplink and downlink communication channels; reconfigurable channels are defined as channels that can be proactively reshaped via emerging platforms or techniques, such as intelligent reflecting surface (IRS), unmanned aerial vehicle (UAV), and movable/fluid antenna (M/FA); and functional channels support not only communication but also other functionalities simultaneously, with typical examples including integrated sensing and communication (ISAC) and joint computing and communication (JCAC) channels. Then, we introduce NGMA models applicable to these three types of channels that cover most of the practical communication scenarios of future wireless communications. Subsequently, we articulate the key optimization technical challenges inherent in the resource allocation design for NGMA, categorizing them into rate-oriented, power-oriented, and reliability-oriented resource allocation designs. The corresponding optimization approaches for solving the formulated resource allocation design problems are then presented. Finally, simulation results are presented and discussed to elucidate the practical implications and insights derived from resource allocation designs in NGMA.
When the regressors of a econometric linear model are nonorthogonal, it is well known that their estimation by ordinary least squares can present various problems that discourage the use of this model. The ridge regression is the most commonly used alternative; however, its generalized version has hardly been analyzed. The present work addresses the estimation of this generalized version, as well as the calculation of its mean squared error, goodness of fit and bootstrap inference.
Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.