This paper presents some of our findings on the scalability of parallel 3D mesh generation on distributed memory machines. The primary objective of this study was to evaluate a distributed memory approach for implementing a 3D parallel Delaunay-based algorithm that converts images to meshes by leveraging an efficient shared memory implementation. The secondary objective was to evaluate the effectiveness of labor (i.e., reduce development time) while introducing minimal overheads to maintain the parallel efficiency of the end-product i.e., distributed implementation. The distributed algorithm utilizes two existing and independently developed parallel Delaunay-based methods: (1) a fine-grained method that employs multi-threading and speculative execution on shared memory nodes and (2) a loosely coupled Delaunay-refinement framework for multi-node platforms. The shared memory implementation uses a FIFO work-sharing scheme for thread scheduling, while the distributed memory implementation utilizes the MPI and the Master-Worker (MW) model. The findings from the specific MPI-MW implementation we tested suggest that the execution on (1) 40 cores not necessary in the same single node is 2.3 times faster than the execution on ten cores, (2) the best speedup is 5.4 with 180 cores again the comparison is with the best performance on ten cores. A closer look at the performance of distributed memory and shared memory implementation executing on a single node (40 cores) suggest that the overheads introduced in the MPI-MW implementation are high and render the MPI-MW implementation 4 times slower than the shared memory code using the same number of cores. These findings raise several questions on the potential scalability of a "black box" approach, i.e., re-using a code designed to execute efficiently on shared memory machines without considering its potential use in a distributed memory setting.
Balancing efficiency and accuracy is a long-standing problem for deploying deep learning models. The trade-off is even more important for real-time safety-critical systems like autonomous vehicles. In this paper, we propose an effective approach for accelerating transformer-based 3D object detectors by dynamically halting tokens at different layers depending on their contribution to the detection task. Although halting a token is a non-differentiable operation, our method allows for differentiable end-to-end learning by leveraging an equivalent differentiable forward-pass. Furthermore, our framework allows halted tokens to be reused to inform the model's predictions through a straightforward token recycling mechanism. Our method significantly improves the Pareto frontier of efficiency versus accuracy when compared with the existing approaches. By halting tokens and increasing model capacity, we are able to improve the baseline model's performance without increasing the model's latency on the Waymo Open Dataset.
To mimic human vision with the way of recognizing the diverse and open world, foundation vision models are much critical. While recent techniques of self-supervised learning show the promising potentiality of this mission, we argue that signals from labelled data are also important for common-sense recognition, and properly chosen pre-text tasks can facilitate the efficiency of vision representation learning. To this end, we propose a novel pre-training framework by adopting both self-supervised and supervised visual pre-text tasks in a multi-task manner. Specifically, given an image, we take a heuristic way by considering its intrinsic style properties, inside objects with their locations and correlations, and how it looks like in 3D space for basic visual understanding. However, large-scale object bounding boxes and correlations are usually hard to achieve. Alternatively, we develop a hybrid method by leveraging both multi-label classification and self-supervised learning. On the one hand, under the multi-label supervision, the pre-trained model can explore the detailed information of an image, e.g., image types, objects, and part of semantic relations. On the other hand, self-supervised learning tasks, with respect to Masked Image Modeling (MIM) and contrastive learning, can help the model learn pixel details and patch correlations. Results show that our pre-trained models can deliver results on par with or better than state-of-the-art (SOTA) results on multiple visual tasks. For example, with a vanilla Swin-B backbone, we achieve 85.3\% top-1 accuracy on ImageNet-1K classification, 47.9 box AP on COCO object detection for Mask R-CNN, and 50.6 mIoU on ADE-20K semantic segmentation when using Upernet. The performance shows the ability of our vision foundation model to serve general purpose vision tasks.
Recent advances in deep learning and automatic speech recognition (ASR) have enabled the end-to-end (E2E) ASR system and boosted the accuracy to a new level. The E2E systems implicitly model all conventional ASR components, such as the acoustic model (AM) and the language model (LM), in a single network trained on audio-text pairs. Despite this simpler system architecture, fusing a separate LM, trained exclusively on text corpora, into the E2E system has proven to be beneficial. However, the application of LM fusion presents certain drawbacks, such as its inability to address the domain mismatch issue inherent to the internal AM. Drawing inspiration from the concept of LM fusion, we propose the integration of an external AM into the E2E system to better address the domain mismatch. By implementing this novel approach, we have achieved a significant reduction in the word error rate, with an impressive drop of up to 14.3% across varied test sets. We also discovered that this AM fusion approach is particularly beneficial in enhancing named entity recognition.
The problem of audio-to-text alignment has seen significant amount of research using complete supervision during training. However, this is typically not in the context of long audio recordings wherein the text being queried does not appear verbatim within the audio file. This work is a collaboration with a non-governmental organization called CARE India that collects long audio health surveys from young mothers residing in rural parts of Bihar, India. Given a question drawn from a questionnaire that is used to guide these surveys, we aim to locate where the question is asked within a long audio recording. This is of great value to African and Asian organizations that would otherwise have to painstakingly go through long and noisy audio recordings to locate questions (and answers) of interest. Our proposed framework, INDENT, uses a cross-attention-based model and prior information on the temporal ordering of sentences to learn speech embeddings that capture the semantics of the underlying spoken text. These learnt embeddings are used to retrieve the corresponding audio segment based on text queries at inference time. We empirically demonstrate the significant effectiveness (improvement in R-avg of about 3%) of our model over those obtained using text-based heuristics. We also show how noisy ASR, generated using state-of-the-art ASR models for Indian languages, yields better results when used in place of speech. INDENT, trained only on Hindi data is able to cater to all languages supported by the (semantically) shared text space. We illustrate this empirically on 11 Indic languages.
The prevalence of propaganda in our digital society poses a challenge to societal harmony and the dissemination of truth. Detecting propaganda through NLP in text is challenging due to subtle manipulation techniques and contextual dependencies. To address this issue, we investigate the effectiveness of modern Large Language Models (LLMs) such as GPT-3 and GPT-4 for propaganda detection. We conduct experiments using the SemEval-2020 task 11 dataset, which features news articles labeled with 14 propaganda techniques as a multi-label classification problem. Five variations of GPT-3 and GPT-4 are employed, incorporating various prompt engineering and fine-tuning strategies across the different models. We evaluate the models' performance by assessing metrics such as $F1$ score, $Precision$, and $Recall$, comparing the results with the current state-of-the-art approach using RoBERTa. Our findings demonstrate that GPT-4 achieves comparable results to the current state-of-the-art. Further, this study analyzes the potential and challenges of LLMs in complex tasks like propaganda detection.
Terminology correctness is important in the downstream application of machine translation, and a prevalent way to ensure this is to inject terminology constraints into a translation system. In our submission to the WMT 2023 terminology translation task, we adopt a translate-then-refine approach which can be domain-independent and requires minimal manual efforts. We annotate random source words with pseudo-terminology translations obtained from word alignment to first train a terminology-aware model. Further, we explore two post-processing methods. First, we use an alignment process to discover whether a terminology constraint has been violated, and if so, we re-decode with the violating word negatively constrained. Alternatively, we leverage a large language model to refine a hypothesis by providing it with terminology constraints. Results show that our terminology-aware model learns to incorporate terminologies effectively, and the large language model refinement process can further improve terminology recall.
We present a generalized FDTD scheme to simulate moving electromagnetic structures with arbitrary space-time configurations. This scheme is a local adaptation and 2+1-dimensional extension of the uniform and 1+1-dimensional scheme recently reported in [1]. The local adaptation, which is allowed by the inherently matched nature of the generalized Yee cell to the conventional Yee cell, extends the range of applicability of the scheme in [1] to moving structures that involve multiple and arbitrary velocity profiles while being fully compatible with conventional absorbing boundary conditions and standard treatments of medium dispersion. We show that a direct application of the conventional FDTD scheme predicts qualitatively correct spectral transitions but quantitatively erroneous scattering amplitudes, we infer from this observation generalized, hybrid-physical and auxiliary (non-physical) - fields that automatically satisfy moving boundary conditions in the laboratory frame, and accordingly establish local update equations based on the related Maxwell's equations and constitutive relations. We subsequently provide a detailed stability analysis with a generalization of the Courant criterion to the dynamic regime. We finally validate and illustrate the proposed method by several representative examples. The proposed scheme fills an important gap in the open literature on computational electromagnetics and offers an unprecedented, direct solution for moving structures in commercial software platforms.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.