亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The potential of Martian lava tubes for resource extraction and habitat sheltering highlights the need for robots capable to undertake the grueling task of their exploration. Driven by this motivation, in this work we introduce a legged robot system optimized for jumping in the low gravity of Mars, designed with leg configurations adaptable to both bipedal and quadrupedal systems. This design utilizes torque-controlled actuators coupled with springs for high-power jumping, robust locomotion, and an energy-efficient resting pose. Key design features include a 5-bar mechanism as leg concept, combined with springs connected by a high-strength cord. The selected 5-bar link lengths and spring stiffness were optimized for maximizing the jump height in Martian gravity and realized as a robot leg. Two such legs combined with a compact body allowed jump testing of a bipedal prototype. The robot is 0.472 m tall and weighs 7.9 kg. Jump testing with significant safety margins resulted in a measured jump height of 1.141 m in Earth's gravity, while a total of 4 jumping experiments are presented. Simulations utilizing the full motor torque and kinematic limits of the design resulted in a maximum possible jump height of 1.52 m in Earth's gravity and 3.63 m in Mars' gravity, highlighting the versatility of jumping as a form of locomotion and overcoming obstacles in lower gravity.

相關內容

Zero-shot stance detection (ZSSD) aims to detect stances toward unseen targets. Incorporating background knowledge to enhance transferability between seen and unseen targets constitutes the primary approach of ZSSD. However, these methods often struggle with a knowledge-task disconnect and lack logical consistency in their predictions. To address these issues, we introduce a novel approach named Logically Consistent Chain-of-Thought (LC-CoT) for ZSSD, which improves stance detection by ensuring relevant and logically sound knowledge extraction. LC-CoT employs a three-step process. Initially, it assesses whether supplementary external knowledge is necessary. Subsequently, it uses API calls to retrieve this knowledge, which can be processed by a separate LLM. Finally, a manual exemplar guides the LLM to infer stance categories, using an if-then logical structure to maintain relevance and logical coherence. This structured approach to eliciting background knowledge enhances the model's capability, outperforming traditional supervised methods without relying on labeled data.

Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.

Pre-trained models (PTMs) have achieved great success in various Software Engineering (SE) downstream tasks following the ``pre-train then fine-tune'' paradigm. As fully fine-tuning all parameters of PTMs can be computationally expensive, a widely used solution is parameter-efficient fine-tuning (PEFT), which freezes PTMs while introducing extra parameters. Though work has been done to test PEFT methods in the SE field, a comprehensive evaluation is still lacking. This paper aims to fill in this gap by evaluating the effectiveness of five PEFT methods on eight PTMs and four SE downstream tasks. For different tasks and PEFT methods, we seek answers to the following research questions: 1) Is it more effective to use PTMs trained specifically on source code, or is it sufficient to use PTMs trained on natural language text? 2) What is the impact of varying model sizes? 3) How does the model architecture affect the performance? Besides effectiveness, we also discuss the efficiency of PEFT methods, concerning the costs of required training time and GPU resource consumption. We hope that our findings can provide a deeper understanding of PEFT methods on various PTMs and SE downstream tasks. All the codes and data are available at \url{//github.com/zwtnju/PEFT.git}.

Recent advancements in large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads. The majority of existing approaches rely on temporal architectures that reuse hardware units for different network layers and operators. However, these methods often encounter challenges in achieving low latency due to considerable memory access overhead. This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs. Our approach involves the specialization of distinct hardware units for specific operators or layers, facilitating direct communication between them through a dataflow architecture while minimizing off-chip memory accesses. We introduce a comprehensive analytical model for estimating the performance of a spatial LLM accelerator, taking into account the on-chip compute and memory resources available on an FPGA. Through our analysis, we can determine the scenarios in which FPGA-based spatial acceleration can outperform its GPU-based counterpart. To enable more productive implementations of an LLM model on FPGAs, we further provide a library of high-level synthesis (HLS) kernels that are composable and reusable. This library will be made available as open-source. To validate the effectiveness of both our analytical model and HLS library, we have implemented BERT and GPT2 on an AMD Alveo U280 FPGA device. Experimental results demonstrate our approach can achieve up to 16.1x speedup when compared to previous FPGA-based accelerators for the BERT model. For GPT generative inference, we attain a 2.2x speedup compared to DFX, an FPGA overlay, in the prefill stage, while achieving a 1.9x speedup and a 5.7x improvement in energy efficiency compared to the NVIDIA A100 GPU in the decode stage.

Advanced Air Mobility (AAM) is an emerging transportation system that will enable the safe and efficient low altitude operations and applications of unmanned aircraft (e.g., passenger transportation and cargo delivery) in the national airspace. This system is currently under active research and development by NASA in collaboration with FAA, other federal partner agencies, industry, and academia to develop its infrastructure, information architecture, software functions, concepts of operation, operations management tools and other functional components. Existing studies have, however, not thoroughly analyzed the net positive impact of AAM on society and environment to justify investments in its infrastructure and implementation. In this work, we fill this gap by evaluating the non-monetary social impact of AAM in the state of Ohio for passengers, patients, farmers, logistics companies and their customers and bridge inspection entities, as well as its environmental impact, by conducting a thorough data-driven quantitative cost-benefit analysis of AAM from the perspective of the state government. To this end, the most relevant and significant benefit and cost factors are identified, monetized, and estimated. Existing ground transportation for the movement of passengers and goods within and across urban areas is considered as the base case. The findings demonstrate that AAM's benefits are large and varied, far outweighing its costs. Insights on these benefits can help gain community acceptance of AAM, which is critical for successful implementation of AAM. The findings support decision-making for policymakers and provide justification for investments in AAM infrastructure by the government and private sector.

Determining the types of neurons within a nervous system plays a significant role in the analysis of brain connectomics and the investigation of neurological diseases. However, the efficiency of utilizing anatomical, physiological, or molecular characteristics of neurons is relatively low and costly. With the advancements in electron microscopy imaging and analysis techniques for brain tissue, we are able to obtain whole-brain connectome consisting neuronal high-resolution morphology and connectivity information. However, few models are built based on such data for automated neuron classification. In this paper, we propose NeuNet, a framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit. Specifically, NeuNet consists of three components, namely Skeleton Encoder, Connectome Encoder, and Readout Layer. Skeleton Encoder integrates the local information of neurons in a bottom-up manner, with a one-dimensional convolution in neural skeleton's point data; Connectome Encoder uses a graph neural network to capture the topological information of neural circuit; finally, Readout Layer fuses the above two information and outputs classification results. We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain. Experiments on these two datasets demonstrated the effectiveness of our model with accuracy of 0.9169 and 0.9363, respectively. Code and data are available at: //github.com/WHUminghui/NeuNet.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司