Tracking of dynamic people in cluttered and crowded human-centered environments is a challenging robotics problem due to the presence of intraclass variations including occlusions, pose deformations, and lighting variations. This paper introduces a novel deep learning architecture, using conditional latent diffusion models, the Latent Diffusion Track (LDTrack), for tracking multiple dynamic people under intraclass variations. By uniquely utilizing conditional latent diffusion models to capture temporal person embeddings, our architecture can adapt to appearance changes of people over time. We incorporated a latent feature encoder network which enables the diffusion process to operate within a high-dimensional latent space to allow for the extraction and spatial-temporal refinement of such rich features as person appearance, motion, location, identity, and contextual information. Extensive experiments demonstrate the effectiveness of LDTrack over other state-of-the-art tracking methods in cluttered and crowded human-centered environments under intraclass variations. Namely, the results show our method outperforms existing deep learning robotic people tracking methods in both tracking accuracy and tracking precision with statistical significance.
This research addresses the critical necessity for advanced rapid response operations in managing a spectrum of environmental hazards. We propose a novel framework, qIoV that integrates quantum computing with the Internet-of-Vehicles (IoV) to leverage the computational efficiency, parallelism, and entanglement properties of quantum mechanics. Our approach involves the use of environmental sensors mounted on vehicles for precise air quality assessment. These sensors are designed to be highly sensitive and accurate, leveraging the principles of quantum mechanics to detect and measure environmental parameters. A salient feature of our proposal is the Quantum Mesh Network Fabric (QMF), a system designed to dynamically adjust the quantum network topology in accordance with vehicular movements. This capability is critical to maintaining the integrity of quantum states against environmental and vehicular disturbances, thereby ensuring reliable data transmission and processing. Moreover, our methodology is further augmented by the incorporation of a variational quantum classifier (VQC) with advanced quantum entanglement techniques. This integration offers a significant reduction in latency for hazard alert transmission, thus enabling expedited communication of crucial data to emergency response teams and the public. Our study on the IBM OpenQSAM 3 platform, utilizing a 127 Qubit system, revealed significant advancements in pair plot analysis, achieving over 90% in precision, recall, and F1-Score metrics and an 83% increase in the speed of toxic gas detection compared to conventional methods.Additionally, theoretical analyses validate the efficiency of quantum rotation, teleportation protocols, and the fidelity of quantum entanglement, further underscoring the potential of quantum computing in enhancing analytical performance.
LiDAR Upsampling is a challenging task for the perception systems of robots and autonomous vehicles, due to the sparse and irregular structure of large-scale scene contexts. Recent works propose to solve this problem by converting LiDAR data from 3D Euclidean space into an image super-resolution problem in 2D image space. Although their methods can generate high-resolution range images with fine-grained details, the resulting 3D point clouds often blur out details and predict invalid points. In this paper, we propose TULIP, a new method to reconstruct high-resolution LiDAR point clouds from low-resolution LiDAR input. We also follow a range image-based approach but specifically modify the patch and window geometries of a Swin-Transformer-based network to better fit the characteristics of range images. We conducted several experiments on three public real-world and simulated datasets. TULIP outperforms state-of-the-art methods in all relevant metrics and generates robust and more realistic point clouds than prior works.
Task-oriented grasping of unfamiliar objects is a necessary skill for robots in dynamic in-home environments. Inspired by the human capability to grasp such objects through intuition about their shape and structure, we present a novel zero-shot task-oriented grasping method leveraging a geometric decomposition of the target object into simple, convex shapes that we represent in a graph structure, including geometric attributes and spatial relationships. Our approach employs minimal essential information - the object's name and the intended task - to facilitate zero-shot task-oriented grasping. We utilize the commonsense reasoning capabilities of large language models to dynamically assign semantic meaning to each decomposed part and subsequently reason over the utility of each part for the intended task. Through extensive experiments on a real-world robotics platform, we demonstrate that our grasping approach's decomposition and reasoning pipeline is capable of selecting the correct part in 92% of the cases and successfully grasping the object in 82% of the tasks we evaluate. Additional videos, experiments, code, and data are available on our project website: //shapegrasp.github.io/.
Accurate motion prediction of pedestrians, cyclists, and other surrounding vehicles (all called agents) is very important for autonomous driving. Most existing works capture map information through an one-stage interaction with map by vector-based attention, to provide map constraints for social interaction and multi-modal differentiation. However, these methods have to encode all required map rules into the focal agent's feature, so as to retain all possible intentions' paths while at the meantime to adapt to potential social interaction. In this work, a progressive interaction network is proposed to enable the agent's feature to progressively focus on relevant maps, in order to better learn agents' feature representation capturing the relevant map constraints. The network progressively encode the complex influence of map constraints into the agent's feature through graph convolutions at the following three stages: after historical trajectory encoder, after social interaction, and after multi-modal differentiation. In addition, a weight allocation mechanism is proposed for multi-modal training, so that each mode can obtain learning opportunities from a single-mode ground truth. Experiments have validated the superiority of progressive interactions to the existing one-stage interaction, and demonstrate the effectiveness of each component. Encouraging results were obtained in the challenging benchmarks.
Deep neural networks (DNNs) are notoriously vulnerable to adversarial attacks that place carefully crafted perturbations on normal examples to fool DNNs. To better understand such attacks, a characterization of the features carried by adversarial examples is needed. In this paper, we tackle this challenge by inspecting the subspaces of sample features through spectral analysis. We first empirically show that the features of either clean signals or adversarial perturbations are redundant and span in low-dimensional linear subspaces respectively with minimal overlap, and the classical low-dimensional subspace projection can suppress perturbation features out of the subspace of clean signals. This makes it possible for DNNs to learn a subspace where only features of clean signals exist while those of perturbations are discarded, which can facilitate the distinction of adversarial examples. To prevent the residual perturbations that is inevitable in subspace learning, we propose an independence criterion to disentangle clean signals from perturbations. Experimental results show that the proposed strategy enables the model to inherently suppress adversaries, which not only boosts model robustness but also motivates new directions of effective adversarial defense.
We consider the well-studied dueling bandit problem, where a learner aims to identify near-optimal actions using pairwise comparisons, under the constraint of differential privacy. We consider a general class of utility-based preference matrices for large (potentially unbounded) decision spaces and give the first differentially private dueling bandit algorithm for active learning with user preferences. Our proposed algorithms are computationally efficient with near-optimal performance, both in terms of the private and non-private regret bound. More precisely, we show that when the decision space is of finite size $K$, our proposed algorithm yields order optimal $O\Big(\sum_{i = 2}^K\log\frac{KT}{\Delta_i} + \frac{K}{\epsilon}\Big)$ regret bound for pure $\epsilon$-DP, where $\Delta_i$ denotes the suboptimality gap of the $i$-th arm. We also present a matching lower bound analysis which proves the optimality of our algorithms. Finally, we extend our results to any general decision space in $d$-dimensions with potentially infinite arms and design an $\epsilon$-DP algorithm with regret $\tilde{O} \left( \frac{d^6}{\kappa \epsilon } + \frac{ d\sqrt{T }}{\kappa} \right)$, providing privacy for free when $T \gg d$.
Understanding the modus operandi of adversaries aids organizations in employing efficient defensive strategies and sharing intelligence in the community. This knowledge is often present in unstructured natural language text within threat analysis reports. A translation tool is needed to interpret the modus operandi explained in the sentences of the threat report and translate it into a structured format. This research introduces a methodology named TTPXHunter for the automated extraction of threat intelligence in terms of Tactics, Techniques, and Procedures (TTPs) from finished cyber threat reports. It leverages cyber domain-specific state-of-the-art natural language processing (NLP) to augment sentences for minority class TTPs and refine pinpointing the TTPs in threat analysis reports significantly. The knowledge of threat intelligence in terms of TTPs is essential for comprehensively understanding cyber threats and enhancing detection and mitigation strategies. We create two datasets: an augmented sentence-TTP dataset of 39,296 samples and a 149 real-world cyber threat intelligence report-to-TTP dataset. Further, we evaluate TTPXHunter on the augmented sentence dataset and the cyber threat reports. The TTPXHunter achieves the highest performance of 92.42% f1-score on the augmented dataset, and it also outperforms existing state-of-the-art solutions in TTP extraction by achieving an f1-score of 97.09% when evaluated over the report dataset. TTPXHunter significantly improves cybersecurity threat intelligence by offering quick, actionable insights into attacker behaviors. This advancement automates threat intelligence analysis, providing a crucial tool for cybersecurity professionals fighting cyber threats.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.
Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .