亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Suppose we observe an infinite series of coin flips $X_1,X_2,\ldots$, and wish to sequentially test the null that these binary random variables are exchangeable. Nonnegative supermartingales (NSMs) are a workhorse of sequential inference, but we prove that they are powerless for this problem. First, utilizing a geometric concept called fork-convexity (a sequential analog of convexity), we show that any process that is an NSM under a set of distributions, is also necessarily an NSM under their "fork-convex hull". Second, we demonstrate that the fork-convex hull of the exchangeable null consists of all possible laws over binary sequences; this implies that any NSM under exchangeability is necessarily nonincreasing, hence always yields a powerless test for any alternative. Since testing arbitrary deviations from exchangeability is information theoretically impossible, we focus on Markovian alternatives. We combine ideas from universal inference and the method of mixtures to derive a "safe e-process", which is a nonnegative process with expectation at most one under the null at any stopping time, and is upper bounded by a martingale, but is not itself an NSM. This in turn yields a level $\alpha$ sequential test that is consistent; regret bounds from universal coding also demonstrate rate-optimal power. We present ways to extend these results to any finite alphabet and to Markovian alternatives of any order using a "double mixture" approach. We provide an array of simulations, and give general approaches based on betting for unstructured or ill-specified alternatives. Finally, inspired by Shafer, Vovk, and Ville, we provide game-theoretic interpretations of our e-processes and pathwise results.

相關內容

The reengineering process of large data-intensive legacy software applications to cloud platforms involves different interrelated activities. These activities are related to planning, architecture design, re-hosting/lift-shift, code refactoring, and other related ones. In this regard, the cloud computing literature has seen the emergence of different methods with a disparate point of view of the same underlying legacy application reengineering process to cloud platforms. As such, the effective interoperability and tailoring of these methods become problematic due to the lack of integrated and consistent standard models.

The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.

Piecewise deterministic Markov processes (PDMPs) are a class of stochastic processes with applications in several fields of applied mathematics spanning from mathematical modeling of physical phenomena to computational methods. A PDMP is specified by three characteristic quantities: the deterministic motion, the law of the random event times, and the jump kernels. The applicability of PDMPs to real world scenarios is currently limited by the fact that these processes can be simulated only when these three characteristics of the process can be simulated exactly. In order to overcome this problem, we introduce discretisation schemes for PDMPs which make their approximate simulation possible. In particular, we design both first order and higher order schemes that rely on approximations of one or more of the three characteristics. For the proposed approximation schemes we study both pathwise convergence to the continuous PDMP as the step size converges to zero and convergence in law to the invariant measure of the PDMP in the long time limit. Moreover, we apply our theoretical results to several PDMPs that arise from the computational statistics and mathematical biology literature.

We consider the problem of estimating the parameters a Gaussian Mixture Model with K components of known weights, all with an identity covariance matrix. We make two contributions. First, at the population level, we present a sharper analysis of the local convergence of EM and gradient EM, compared to previous works. Assuming a separation of $\Omega(\sqrt{\log K})$, we prove convergence of both methods to the global optima from an initialization region larger than those of previous works. Specifically, the initial guess of each component can be as far as (almost) half its distance to the nearest Gaussian. This is essentially the largest possible contraction region. Our second contribution are improved sample size requirements for accurate estimation by EM and gradient EM. In previous works, the required number of samples had a quadratic dependence on the maximal separation between the K components, and the resulting error estimate increased linearly with this maximal separation. In this manuscript we show that both quantities depend only logarithmically on the maximal separation.

A Radial Basis Function Generated Finite-Differences (RBF-FD) inspired technique for evaluating definite integrals over bounded volumes that have smooth boundaries in three dimensions is described. Such methods are necessary in many areas of Applied Mathematics, Mathematical Physics and myriad other application areas. Previous approaches needed restrictive uniformity in the node set, which the algorithm presented here does not require. By using RBF-FD approach, the proposed algorithm computes quadrature weights for $N$ arbitrarily scattered nodes in only $O(N\mbox{ log}N)$ operations with high orders of accuracy.

In some problem spaces, the high cost of obtaining ground truth labels necessitates use of lower quality reference datasets. It is difficult to benchmark model performance using these datasets, as evaluation results may be biased. We propose a supplement to using reference labels, which we call an approximate ground truth refinement (AGTR). Using an AGTR, we prove that bounds on specific metrics used to evaluate clustering algorithms and multi-class classifiers can be computed without reference labels. We also introduce a procedure that uses an AGTR to identify inaccurate evaluation results produced from datasets of dubious quality. Creating an AGTR requires domain knowledge, and malware family classification is a task with robust domain knowledge approaches that support the construction of an AGTR. We demonstrate our AGTR evaluation framework by applying it to a popular malware labeling tool to diagnose over-fitting in prior testing and evaluate changes whose impact could not be meaningfully quantified under previous data.

Statistical tasks such as density estimation and approximate Bayesian inference often involve densities with unknown normalising constants. Score-based methods, including score matching, are popular techniques as they are free of normalising constants. Although these methods enjoy theoretical guarantees, a little-known fact is that they suffer from practical failure modes when the unnormalised distribution of interest has isolated components -- they cannot discover isolated components or identify the correct mixing proportions between components. We demonstrate these findings using simple distributions and present heuristic attempts to address these issues. We hope to bring the attention of theoreticians and practitioners to these issues when developing new algorithms and applications.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Generative adversarial nets (GANs) have generated a lot of excitement. Despite their popularity, they exhibit a number of well-documented issues in practice, which apparently contradict theoretical guarantees. A number of enlightening papers have pointed out that these issues arise from unjustified assumptions that are commonly made, but the message seems to have been lost amid the optimism of recent years. We believe the identified problems deserve more attention, and highlight the implications on both the properties of GANs and the trajectory of research on probabilistic models. We recently proposed an alternative method that sidesteps these problems.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

北京阿比特科技有限公司