This paper proposes a specialized autonomous driving system that takes into account the unique constraints and characteristics of automotive systems, aiming for innovative advancements in autonomous driving technology. The proposed system systematically analyzes the intricate data flow in autonomous driving and provides functionality to dynamically adjust various factors that influence deep learning models. Additionally, for algorithms that do not rely on deep learning models, the system analyzes the flow to determine resource allocation priorities. In essence, the system optimizes data flow and schedules efficiently to ensure real-time performance and safety. The proposed system was implemented in actual autonomous vehicles and experimentally validated across various driving scenarios. The experimental results provide evidence of the system's stable inference and effective control of autonomous vehicles, marking a significant turning point in the development of autonomous driving systems.
We propose a diffusion approximation method to the continuous-state Markov Decision Processes (MDPs) that can be utilized to address autonomous navigation and control in unstructured off-road environments. In contrast to most decision-theoretic planning frameworks that assume fully known state transition models, we design a method that eliminates such a strong assumption that is often extremely difficult to engineer in reality. We first take the second-order Taylor expansion of the value function. The Bellman optimality equation is then approximated by a partial differential equation, which only relies on the first and second moments of the transition model. By combining the kernel representation of the value function, we design an efficient policy iteration algorithm whose policy evaluation step can be represented as a linear system of equations characterized by a finite set of supporting states. We first validate the proposed method through extensive simulations in 2D obstacle avoidance and 2.5D terrain navigation problems. The results show that the proposed approach leads to a much superior performance over several baselines. We then develop a system that integrates our decision-making framework with onboard perception and conduct real-world experiments in both cluttered indoor and unstructured outdoor environments. The results from the physical systems further demonstrate the applicability of our method in challenging real-world environments.
The interest in network analysis of bibliographic data has grown substantially in recent years, yet comprehensive statistical models for examining the complete dynamics of scientific networks based on bibliographic data are generally lacking. Current empirical studies often focus on models restricting analysis either to paper citation networks (paper-by-paper) or author networks (author-by-author). However, such networks encompass not only direct connections between papers, but also indirect relationships between the references of papers connected by a citation link. In this paper, we extend recently developed relational hyperevent models (RHEM) for analyzing scientific networks. We introduce new covariates representing theoretically meaningful and empirically interesting sub-network configurations. The model accommodates testing hypotheses considering: (i) the polyadic nature of scientific publication events, and (ii) the interdependencies between authors and references of current and prior papers. We implement the model using purpose-built, publicly available open-source software, demonstrating its empirical value in an analysis of a large publicly available scientific network dataset. Assessing the relative strength of various effects reveals that both the hyperedge structure of publication events, as well as the interconnection between authors and references significantly improve our understanding and interpretation of collaborative scientific production.
This paper studies the relationships between three notions of behavioural preorder that have been proposed in the literature: refinement over modal transition systems, and the covariant-contravariant simulation and the partial bisimulation preorders over labelled transition systems. It is shown that there are mutual translations between modal transition systems and labelled transition systems that preserve, and reflect, refinement and the covariant-contravariant simulation preorder. The translations are also shown to preserve the modal properties that can be expressed in the logics that characterize those preorders. A translation from labelled transition systems modulo the partial bisimulation preorder into the same model modulo the covariant-contravariant simulation preorder is also offered, together with some evidence that the former model is less expressive than the latter. In order to gain more insight into the relationships between modal transition systems modulo refinement and labelled transition systems modulo the covariant-contravariant simulation preorder, their connections are also phrased and studied in the context of institutions.
Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.
Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in theproblem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.
This paper introduces a novel concept of interval probability measures that enables the representation of imprecise probabilities, or uncertainty, in a natural and coherent manner. Within an algebra of sets, we introduce a notion of weak complementation denoted as $\psi$. The interval probability measure of an event $H$ is defined with respect to the set of indecisive eventualities $(\psi(H))^c$, which is included in the standard complement $H^c$. We characterize a broad class of interval probability measures and define their properties. Additionally, we establish an updating rule with respect to $H$, incorporating concepts of statistical independence and dependence. The interval distribution of a random variable is formulated, and a corresponding definition of stochastic dominance between two random variables is introduced. As a byproduct, a formal solution to the century-old Keynes-Ramsey controversy is presented.
We study variation in policing outcomes attributable to differential policing practices in New York City (NYC) using geographic regression discontinuity designs (GeoRDDs). By focusing on small geographic windows near police precinct boundaries we can estimate local average treatment effects of police precincts on arrest rates. We propose estimands and develop estimators for the GeoRDD when the data come from a spatial point process. Additionally, standard GeoRDDs rely on continuity assumptions of the potential outcome surface or a local randomization assumption within a window around the boundary. These assumptions, however, can easily be violated in realistic applications. We develop a novel and robust approach to testing whether there are differences in policing outcomes that are caused by differences in police precincts across NYC. Importantly, this approach is applicable to standard regression discontinuity designs with both numeric and point process data. This approach is robust to violations of traditional assumptions made, and is valid under weaker assumptions. We use a unique form of resampling to provide a valid estimate of our test statistic's null distribution even under violations of standard assumptions. This procedure gives substantially different results in the analysis of NYC arrest rates than those that rely on standard assumptions.
This paper introduces three key initiatives in the pursuit of a hybrid decoding framework characterized by superior decoding performance, high throughput, low complexity, and independence from channel noise variance. Firstly, adopting a graphical neural network perspective, we propose a design methodology for a family of neural min-sum variants. Our exploration delves into the frame error rates associated with different decoding variants and the consequential impact of decoding failures on subsequent ordered statistics decoding. Notably, these neural min-sum variants exhibit generally indistinguishable performance, hence the simplest member is chosen as the constituent of the hybrid decoding. Secondly, to address computational complexities arising from exhaustive searches for authentic error patterns in cases of decoding failure, two alternatives for ordered statistics decoding implementation are proposed. The first approach involves uniformly grouping test error patterns, while the second scheme dynamically generates qualified searching test error patterns with varied sizes for each group. In both methods, group priorities are determined empirically. Thirdly, iteration diversity is highlighted in the case of LDPC codes requiring high maximum iterations of decoding. This is achieved by segmenting the long iterative decoding trajectory of a decoding failure into shorter segments, which are then independently fed to small models to enhance the chances of acquiring the authentic error pattern. These ideas are substantiated through extensive simulation results covering the codes with block lengths ranging from one hundred to several hundreds.
Automatic Speech Recognition (ASR) systems are used in the financial domain to enhance the caller experience by enabling natural language understanding and facilitating efficient and intuitive interactions. Increasing use of ASR systems requires that such systems exhibit very low error rates. The predominant ASR models to collect numeric data are large, general-purpose commercial models -- Google Speech-to-text (STT), or Amazon Transcribe -- or open source (OpenAI's Whisper). Such ASR models are trained on hundreds of thousands of hours of audio data and require considerable resources to run. Despite recent progress large speech recognition models, we highlight the potential of smaller, specialized "micro" models. Such light models can be trained perform well on number recognition specific tasks, competing with general models like Whisper or Google STT while using less than 80 minutes of training time and occupying at least an order of less memory resources. Also, unlike larger speech recognition models, micro-models are trained on carefully selected and curated datasets, which makes them highly accurate, agile, and easy to retrain, while using low compute resources. We present our work on creating micro models for multi-digit number recognition that handle diverse speaking styles reflecting real-world pronunciation patterns. Our work contributes to domain-specific ASR models, improving digit recognition accuracy, and privacy of data. An added advantage, their low resource consumption allows them to be hosted on-premise, keeping private data local instead uploading to an external cloud. Our results indicate that our micro-model makes less errors than the best-of-breed commercial or open-source ASRs in recognizing digits (1.8% error rate of our best micro-model versus 5.8% error rate of Whisper), and has a low memory footprint (0.66 GB VRAM for our model versus 11 GB VRAM for Whisper).
This paper aims first to perform robust continuous analysis of a mixed nonlinear formulation for stress-assisted diffusion of a solute that interacts with an elastic material, and second to propose and analyse a virtual element formulation of the model problem. The two-way coupling mechanisms between the Herrmann formulation for linear elasticity and the reaction-diffusion equation (written in mixed form) consist of diffusion-induced active stress and stress-dependent diffusion. The two sub-problems are analysed using the extended Babu\v{s}ka--Brezzi--Braess theory for perturbed saddle-point problems. The well-posedness of the nonlinearly coupled system is established using a Banach fixed-point strategy under the smallness assumption on data. The virtual element formulations for the uncoupled sub-problems are proven uniquely solvable by a fixed-point argument in conjunction with appropriate projection operators. We derive the a priori error estimates, and test the accuracy and performance of the proposed method through computational simulations.