亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is known that different categorial grammars have surface representation in a fragment of first order multiplicative linear logic (MLL1). We show that the fragment of interest is equivalent to the recently introduced extended tensor type calculus (ETTC). ETTC is a calculus of specific typed terms, which represent tuples of strings, more precisely bipartite graphs decorated with strings. Types are derived from linear logic formulas, and rules correspond to concrete operations on these string-labeled graphs, so that they can be conveniently visualized. This provides the above mentioned fragment of MLL1 that is relevant for language modeling not only with some alternative syntax and intuitive geometric representation, but also with an intrinsic deductive system, which has been absent. In this work we consider a non-trivial notationally enriched variation of the previously introduced ETTC, which allows more concise and transparent computations. We present both a cut-free sequent calculus and a natural deduction formalism.

相關內容

One tuple of probability vectors is more informative than another tuple when there exists a single stochastic matrix transforming the probability vectors of the first tuple into the probability vectors of the other. This is called matrix majorization. Solving an open problem raised by Mu et al, we show that if certain monotones - namely multivariate extensions of R\'{e}nyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking the $n$-fold Kronecker power of each input distribution to the $n$-fold Kronecker power of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such matrix majorization in large samples. Our result also gives conditions for the existence of a sequence of statistical maps that asymptotically (with vanishing error) convert a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on majorization in large samples and in the catalytic regime as well as relative majorization in a unified manner.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.

The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the Despr\'es algorithm for solving harmonic wave problems where transmission conditions are enforced by means of a non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain decomposition algorithm.

The implicit trace estimation problem asks for an approximation of the trace of a square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized algorithms, XTrace and XNysTrace, for the trace estimation problem by exploiting both variance reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments show that the new methods can achieve errors that are orders of magnitude smaller than existing algorithms, such as the Girard-Hutchinson estimator or the Hutch++ estimator. A theoretical analysis confirms the benefits by offering a precise description of the performance of these algorithms as a function of the spectrum of the input matrix. The paper also develops an exchangeable estimator, XDiag, for approximating the diagonal of a square matrix using matvecs.

Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.

We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.

The Levin method is a well-known technique for evaluating oscillatory integrals, which operates by solving a certain ordinary differential equation in order to construct an antiderivative of the integrand. It was long believed that this approach suffers from "low-frequency breakdown," meaning that the accuracy of the calculated value of the integral deteriorates when the integrand is only slowly oscillating. Recently presented experimental evidence, however, suggests that if a Chebyshev spectral method is used to discretize the differential equation and the resulting linear system is solved via a truncated singular value decomposition, then no low-frequency breakdown occurs. Here, we provide a proof that this is the case, and our proof applies not only when the integrand is slowly oscillating, but even in the case of stationary points. Our result puts adaptive schemes based on the Levin method on a firm theoretical foundation and accounts for their behavior in the presence of stationary points. We go on to point out that by combining an adaptive Levin scheme with phase function methods for ordinary differential equations, a large class of oscillatory integrals involving special functions, including products of such functions and the compositions of such functions with slowly-varying functions, can be easily evaluated without the need for symbolic computations. Finally, we present the results of numerical experiments which illustrate the consequences of our analysis and demonstrate the properties of the adaptive Levin method.

Gradient-enhanced Kriging (GE-Kriging) is a well-established surrogate modelling technique for approximating expensive computational models. However, it tends to get impractical for high-dimensional problems due to the size of the inherent correlation matrix and the associated high-dimensional hyper-parameter tuning problem. To address these issues, a new method, called sliced GE-Kriging (SGE-Kriging), is developed in this paper for reducing both the size of the correlation matrix and the number of hyper-parameters. We first split the training sample set into multiple slices, and invoke Bayes' theorem to approximate the full likelihood function via a sliced likelihood function, in which multiple small correlation matrices are utilized to describe the correlation of the sample set rather than one large one. Then, we replace the original high-dimensional hyper-parameter tuning problem with a low-dimensional counterpart by learning the relationship between the hyper-parameters and the derivative-based global sensitivity indices. The performance of SGE-Kriging is finally validated by means of numerical experiments with several benchmarks and a high-dimensional aerodynamic modeling problem. The results show that the SGE-Kriging model features an accuracy and robustness that is comparable to the standard one but comes at much less training costs. The benefits are most evident for high-dimensional problems with tens of variables.

We propose a finite difference scheme for the numerical solution of a two-dimensional singularly perturbed convection-diffusion partial differential equation whose solution features interacting boundary and interior layers, the latter due to discontinuities in source term. The problem is posed on the unit square. The second derivative is multiplied by a singular perturbation parameter, $\epsilon$, while the nature of the first derivative term is such that flow is aligned with a boundary. These two facts mean that solutions tend to exhibit layers of both exponential and characteristic type. We solve the problem using a finite difference method, specially adapted to the discontinuities, and applied on a piecewise-uniform (Shishkin). We prove that that the computed solution converges to the true one at a rate that is independent of the perturbation parameter, and is nearly first-order. We present numerical results that verify that these results are sharp.

In this contribution we deal with Gaussian quadrature rules based on orthogonal polynomials associated with a weight function $w(x)= x^{\alpha} e^{-x}$ supported on an interval $(0,z)$, $z>0.$ The modified Chebyshev algorithm is used in order to test the accuracy in the computation of the coefficients of the three-term recurrence relation, the zeros and weights, as well as the dependence on the parameter $z.$

北京阿比特科技有限公司