亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

State-of-the-art video object detection methods maintain a memory structure, either a sliding window or a memory queue, to enhance the current frame using attention mechanisms. However, we argue that these memory structures are not efficient or sufficient because of two implied operations: (1) concatenating all features in memory for enhancement, leading to a heavy computational cost; (2) frame-wise memory updating, preventing the memory from capturing more temporal information. In this paper, we propose a multi-level aggregation architecture via memory bank called MAMBA. Specifically, our memory bank employs two novel operations to eliminate the disadvantages of existing methods: (1) light-weight key-set construction which can significantly reduce the computational cost; (2) fine-grained feature-wise updating strategy which enables our method to utilize knowledge from the whole video. To better enhance features from complementary levels, i.e., feature maps and proposals, we further propose a generalized enhancement operation (GEO) to aggregate multi-level features in a unified manner. We conduct extensive evaluations on the challenging ImageNetVID dataset. Compared with existing state-of-the-art methods, our method achieves superior performance in terms of both speed and accuracy. More remarkably, MAMBA achieves mAP of 83.7/84.6% at 12.6/9.1 FPS with ResNet-101. Code is available at //github.com/guanxiongsun/vfe.pytorch.

相關內容

Utilizing potent representations of the large vision-language models (VLMs) to accomplish various downstream tasks has attracted increasing attention. Within this research field, soft prompt learning has become a representative approach for efficiently adapting VLMs such as CLIP, to tasks like image classification. However, most existing prompt learning methods learn text tokens that are unexplainable, which cannot satisfy the stringent interpretability requirements of Explainable Artificial Intelligence (XAI) in high-stakes scenarios like healthcare. To address this issue, we propose a novel explainable prompt learning framework that leverages medical knowledge by aligning the semantics of images, learnable prompts, and clinical concept-driven prompts at multiple granularities. Moreover, our framework addresses the lack of valuable concept annotations by eliciting knowledge from large language models and offers both visual and textual explanations for the prompts. Extensive experiments and explainability analyses conducted on various datasets, with and without concept labels, demonstrate that our method simultaneously achieves superior diagnostic performance, flexibility, and interpretability, shedding light on the effectiveness of foundation models in facilitating XAI. The code will be made publically available.

Learning robust and scalable visual representations from massive multi-view video data remains a challenge in computer vision and autonomous driving. Existing pre-training methods either rely on expensive supervised learning with 3D annotations, limiting the scalability, or focus on single-frame or monocular inputs, neglecting the temporal information. We propose MIM4D, a novel pre-training paradigm based on dual masked image modeling (MIM). MIM4D leverages both spatial and temporal relations by training on masked multi-view video inputs. It constructs pseudo-3D features using continuous scene flow and projects them onto 2D plane for supervision. To address the lack of dense 3D supervision, MIM4D reconstruct pixels by employing 3D volumetric differentiable rendering to learn geometric representations. We demonstrate that MIM4D achieves state-of-the-art performance on the nuScenes dataset for visual representation learning in autonomous driving. It significantly improves existing methods on multiple downstream tasks, including BEV segmentation (8.7% IoU), 3D object detection (3.5% mAP), and HD map construction (1.4% mAP). Our work offers a new choice for learning representation at scale in autonomous driving. Code and models are released at //github.com/hustvl/MIM4D

Graphs with abundant attributes are essential in modeling interconnected entities and improving predictions in various real-world applications. Traditional Graph Neural Networks (GNNs), which are commonly used for modeling attributed graphs, need to be re-trained every time when applied to different graph tasks and datasets. Although the emergence of Large Language Models (LLMs) has introduced a new paradigm in natural language processing, the generative potential of LLMs in graph mining remains largely under-explored. To this end, we propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and LLMs and facilitates a more effective and generic approach for graph mining across different tasks and datasets. Specifically, we first introduce a compact graph description via the proposed adaptive input generation to encapsulate key information from the graph under the constraints of language token limitations. Then, we propose a diverse instruction generation mechanism, which distills the reasoning capabilities from LLMs (e.g., GPT-4) to create task-specific Chain-of-Thought-based instruction packages for different graph tasks. Finally, we propose a graph-aware instruction tuning with a dynamic instruction package allocation strategy across tasks and datasets, ensuring the effectiveness and generalization of the training process. Our experimental results demonstrate significant improvements in different graph tasks, showcasing the potential of our MuseGraph in enhancing the accuracy of graph-oriented downstream tasks while keeping the generation powers of LLMs.

Training large language models (LLMs) encounters challenges in GPU memory consumption due to the high memory requirements of model states. The widely used Zero Redundancy Optimizer (ZeRO) addresses this issue through strategic sharding but introduces communication challenges at scale. To tackle this problem, we propose AMSP, a system designed to optimize ZeRO for scalable LLM training. AMSP incorporates three flexible sharding strategies: Full-Replica, Full-Sharding, and Partial-Sharding, and allows each component within the model states (Parameters, Gradients, Optimizer States) to independently choose a sharding strategy as well as the device mesh. We conduct a thorough analysis of communication costs, formulating an optimization problem to discover the optimal sharding strategy. Additionally, AMSP optimizes distributed LLM training by efficiently overlapping communication with computation. Evaluations demonstrate up to 52\% Model FLOPs Utilization (MFU) when training the LLaMA-based model on 1024 GPUs, resulting in a 1.56 times improvement in training throughput compared to newly proposed systems like MiCS and ZeRO++.

As large language models (LLMs) take on complex tasks, their inputs are supplemented with longer contexts that incorporate domain knowledge or user-specific information. Yet using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until the whole context is processed by the LLM. While the context-processing delay can be reduced by reusing the KV cache of a context across different inputs, fetching the KV cache, which contains large tensors, over the network can cause extra network delays. CacheGen is a fast context-loading module for LLM systems. First, CacheGen uses a custom tensor encoder, which embraces KV cache's distributional properties, to encode a KV cache into more compact bitstream representations with negligible encoding/decoding overhead. This reduces the bandwidth demand to fetch the KV cache. Second, to maintain low context-loading delay and high generation quality, CacheGen adapts the streaming strategies to cope with changes in available bandwidth. When available bandwidth drops, CacheGen may raise the compression level for a part of the context or choose to recompute its KV cache on the fly. We test CacheGen on four popular LLMs of various sizes and four datasets (662 contexts in total). Compared to the recent systems that reuse the KV cache, CacheGen reduces the KV cache size by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3.2x while having negligible impact on the LLM response quality in accuracy or perplexity.

Mixed-media tutorials, which integrate videos, images, text, and diagrams to teach procedural skills, offer more browsable alternatives than timeline-based videos. However, manually creating such tutorials is tedious, and existing automated solutions are often restricted to a particular domain. While AI models hold promise, it is unclear how to effectively harness their powers, given the multi-modal data involved and the vast landscape of models. We present TutoAI, a cross-domain framework for AI-assisted mixed-media tutorial creation on physical tasks. First, we distill common tutorial components by surveying existing work; then, we present an approach to identify, assemble, and evaluate AI models for component extraction; finally, we propose guidelines for designing user interfaces (UI) that support tutorial creation based on AI-generated components. We show that TutoAI has achieved higher or similar quality compared to a baseline model in preliminary user studies.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

北京阿比特科技有限公司