亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims to explore the potential of leveraging Large Language Models (LLMs) for data augmentation in crosslingual commonsense reasoning datasets, where the available training data is extremely limited. To achieve this, we employ several LLMs including Dolly-v2, StableVicuna, ChatGPT, and GPT-4 to augment three datasets: XCOPA, XWinograd, and XStoryCloze. Subsequently, we assess the effectiveness of fine-tuning smaller crosslingual models, mBERT and XLMR, using the synthesised data. We compare the performance of training with data generated in English and target languages, as well as translating the English-generated data into the target languages. Our experiments reveal the overall advantages of incorporating data generated by LLMs. Training on synthetic data generated by GPT-4, whether English or multilingual, improves performance consistently compared to the baseline. Other models also exhibit an overall increase in performance, however, their effectiveness decreases in some settings. We also ask native speakers to evaluate the naturalness and logical soundness of the generated examples for different languages. Human evaluation reveals that LLMs like ChatGPT and GPT-4 excel at generating natural text in most languages, except a few such as Tamil. Moreover, ChatGPT trails behind in generating plausible alternatives in comparison to the original dataset, while GPT-4 demonstrates competitive logic consistency in the synthesised data.

相關內容

Deep neural networks (DNNs) may suffer from significantly degenerated performance when the training and test data are of different underlying distributions. Despite the importance of model generalization to out-of-distribution (OOD) data, the accuracy of state-of-the-art (SOTA) models on OOD data can plummet. Recent work has demonstrated that regular or off-manifold adversarial examples, as a special case of data augmentation, can be used to improve OOD generalization. Inspired by this, we theoretically prove that on-manifold adversarial examples can better benefit OOD generalization. Nevertheless, it is nontrivial to generate on-manifold adversarial examples because the real manifold is generally complex. To address this issue, we proposed a novel method of Augmenting data with Adversarial examples via a Wavelet module (AdvWavAug), an on-manifold adversarial data augmentation technique that is simple to implement. In particular, we project a benign image into a wavelet domain. With the assistance of the sparsity characteristic of wavelet transformation, we can modify an image on the estimated data manifold. We conduct adversarial augmentation based on AdvProp training framework. Extensive experiments on different models and different datasets, including ImageNet and its distorted versions, demonstrate that our method can improve model generalization, especially on OOD data. By integrating AdvWavAug into the training process, we have achieved SOTA results on some recent transformer-based models.

Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.

Linear State Space Models (SSMs) have demonstrated strong performance in a variety of sequence modeling tasks due to their efficient encoding of the recurrent structure. However, in more comprehensive tasks like language modeling and machine translation, self-attention-based models still outperform SSMs. Hybrid models employing both SSM and self-attention generally show promising performance, but current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. In this work, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption at both training and inference stages of sequence modeling. As a specific instantiation of SMA, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including language modeling, speech classification and long-range arena, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity and reveals the amount of attention needed for each task through the learned sparse activation patterns.

Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司