亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.

相關內容

Deep reinforcement learning has shown promise in various engineering applications, including vehicular traffic control. The non-stationary nature of traffic, especially in the lane-free environment with more degrees of freedom in vehicle behaviors, poses challenges for decision-making since a wrong action might lead to a catastrophic failure. In this paper, we propose a novel driving strategy for Connected and Automated Vehicles (CAVs) based on a competitive Multi-Agent Deep Deterministic Policy Gradient approach. The developed multi-agent deep reinforcement learning algorithm creates a dynamic and non-stationary scenario, mirroring real-world traffic complexities and making trained agents more robust. The algorithm's reward function is strategically and uniquely formulated to cover multiple vehicle control tasks, including maintaining desired speeds, overtaking, collision avoidance, and merging and diverging maneuvers. Moreover, additional considerations for both lateral and longitudinal passenger comfort and safety criteria are taken into account. We employed inter-vehicle forces, known as nudging and repulsive forces, to manage the maneuvers of CAVs in a lane-free traffic environment. The proposed driving algorithm is trained and evaluated on lane-free roads using the Simulation of Urban Mobility platform. Experimental results demonstrate the algorithm's efficacy in handling different objectives, highlighting its potential to enhance safety and efficiency in autonomous driving within lane-free traffic environments.

As the current initialization method in the state-of-the-art Stereo Visual-Inertial SLAM framework, ORB-SLAM3 has limitations. Its success depends on the performance of the pure stereo SLAM system and is based on the underlying assumption that pure visual SLAM can accurately estimate the camera trajectory, which is essential for inertial parameter estimation. Meanwhile, the further improved initialization method for ORB-SLAM3, known as Stereo-NEC, is time-consuming due to applying keypoint tracking to estimate gyroscope bias with normal epipolar constraints. To address the limitations of previous methods, this paper proposes a method aimed at enhancing translation accuracy during the initialization stage. The fundamental concept of our method is to improve the translation estimate with a 3 Degree-of-Freedom (DoF) Bundle Adjustment (BA), independently, while the rotation estimate is fixed, instead of using ORB-SLAM3's 6-DoF BA. Additionally, the rotation estimate will be updated by considering IMU measurements and gyroscope bias, unlike ORB-SLAM3's rotation, which is directly obtained from stereo visual odometry and may yield inferior results when operating in challenging scenarios. We also conduct extensive evaluations on the public benchmark, the EuRoC dataset, demonstrating that our method excels in accuracy.

Cloth-changing person Re-IDentification (Re-ID) is a particularly challenging task, suffering from two limitations of inferior discriminative features and limited training samples. Existing methods mainly leverage auxiliary information to facilitate identity-relevant feature learning, including soft-biometrics features of shapes or gaits, and additional labels of clothing. However, this information may be unavailable in real-world applications. In this paper, we propose a novel FIne-grained Representation and Recomposition (FIRe$^{2}$) framework to tackle both limitations without any auxiliary annotation or data. Specifically, we first design a Fine-grained Feature Mining (FFM) module to separately cluster images of each person. Images with similar so-called fine-grained attributes (e.g., clothes and viewpoints) are encouraged to cluster together. An attribute-aware classification loss is introduced to perform fine-grained learning based on cluster labels, which are not shared among different people, promoting the model to learn identity-relevant features. Furthermore, to take full advantage of fine-grained attributes, we present a Fine-grained Attribute Recomposition (FAR) module by recomposing image features with different attributes in the latent space. It significantly enhances robust feature learning. Extensive experiments demonstrate that FIRe$^{2}$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks. The code is available at //github.com/QizaoWang/FIRe-CCReID.

Affine frequency division multiplexing (AFDM) is a promising new multicarrier technique based on discrete affine Fourier transform (DAFT). By properly tuning pre-chirp parameter and post-chirp parameter in the DAFT, the effective channel in the DAFT domain can completely avoid overlap of different paths, thus constitutes a full representation of delay-Doppler profile, which significantly improves the system performance in high mobility scenarios. However, AFDM has the crucial problem of high peak-to-average power ratio (PAPR) caused by phase randomness of modulated symbols. In this letter, an algorithm named grouped pre-chirp selection (GPS) is proposed to reduce the PAPR by changing the value of pre-chirp parameter on sub-carriers group by group. Specifically, it is demonstrated first that the important properties of AFDM system are maintained when implementing GPS. Secondly, we elaborate the operation steps of GPS algorithm, illustrating its effect on PAPR reduction and its advantage in terms of computational complexity compared with the ungrouped approach. Finally, simulation results of PAPR reduction in the form of complementary cumulative distribution function (CCDF) show the effectiveness of the proposed GPS algorithm.

Algorithms for bilevel optimization often encounter Hessian computations, which are prohibitive in high dimensions. While recent works offer first-order methods for unconstrained bilevel problems, the constrained setting remains relatively underexplored. We present first-order linearly constrained optimization methods with finite-time hypergradient stationarity guarantees. For linear equality constraints, we attain $\epsilon$-stationarity in $\widetilde{O}(\epsilon^{-2})$ gradient oracle calls, which is nearly-optimal. For linear inequality constraints, we attain $(\delta,\epsilon)$-Goldstein stationarity in $\widetilde{O}(d{\delta^{-1} \epsilon^{-3}})$ gradient oracle calls, where $d$ is the upper-level dimension. Finally, we obtain for the linear inequality setting dimension-free rates of $\widetilde{O}({\delta^{-1} \epsilon^{-4}})$ oracle complexity under the additional assumption of oracle access to the optimal dual variable. Along the way, we develop new nonsmooth nonconvex optimization methods with inexact oracles. We verify these guarantees with preliminary numerical experiments.

Anomaly detection deals with detecting deviations from established patterns within data. It has various applications like autonomous driving, predictive maintenance, and medical diagnosis. To improve anomaly detection accuracy, transfer learning can be applied to large, pre-trained models and adapt them to the specific application context. In this paper, we propose a novel framework for online-adaptive anomaly detection using transfer learning. The approach adapts to different environments by selecting visually similar training images and online fitting a normality model to EfficientNet features extracted from the training subset. Anomaly detection is then performed by computing the Mahalanobis distance between the normality model and the test image features. Different similarity measures (SIFT/FLANN, Cosine) and normality models (MVG, OCSVM) are employed and compared with each other. We evaluate the approach on different anomaly detection benchmarks and data collected in controlled laboratory settings. Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.

Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-informed parameterized quantum circuit (SI-PQC) for efficiently preparing and training of quantum computational statistical models, including arbitrary distributions and their weighted mixtures. The SI-PQC features a static structure with trainable parameters, enabling in-depth optimized circuit compilation, exponential reductions in resource and time consumption, and improved trainability and interpretability for learning quantum states and classical model parameters simultaneously. As an efficient subroutine for preparing and learning in various quantum algorithms, the SI-PQC addresses the input bottleneck and facilitates the injection of prior knowledge.

Object detection is crucial for ensuring safe autonomous driving. However, data-driven approaches face challenges when encountering minority or novel objects in the 3D driving scene. In this paper, we propose VisLED, a language-driven active learning framework for diverse open-set 3D Object Detection. Our method leverages active learning techniques to query diverse and informative data samples from an unlabeled pool, enhancing the model's ability to detect underrepresented or novel objects. Specifically, we introduce the Vision-Language Embedding Diversity Querying (VisLED-Querying) algorithm, which operates in both open-world exploring and closed-world mining settings. In open-world exploring, VisLED-Querying selects data points most novel relative to existing data, while in closed-world mining, it mines novel instances of known classes. We evaluate our approach on the nuScenes dataset and demonstrate its efficiency compared to random sampling and entropy-querying methods. Our results show that VisLED-Querying consistently outperforms random sampling and offers competitive performance compared to entropy-querying despite the latter's model-optimality, highlighting the potential of VisLED for improving object detection in autonomous driving scenarios. We make our code publicly available at //github.com/Bjork-crypto/VisLED-Querying

Facility location problems have been a major research area of interest in the last several decades. In particular, uncapacitated location problems (ULP) have enormous applications. Variations of ULP often appear, especially as large-scale subproblems in more complex combinatorial optimization problems. Although many researchers have studied different versions of ULP (e.g., uncapacitated facility location problem (UCFLP) and p-Median problem), most of these authors have considered small to moderately sized problems. In this paper, we address the ULP and provide a fast adaptive meta-heuristic for large-scale problems. The approach is based on critical event memory tabu search. For the diversification component of the algorithm, we have chosen a procedure based on a sequencing problem commonly used for traveling salesman-type problems. The efficacy of this approach is evaluated across a diverse range of benchmark problems sourced from the Internet, with a comprehensive comparison against four prominent algorithms in the literature. The proposed adaptive critical event tabu search (ACETS) demonstrates remarkable effectiveness for large-scale problems. The algorithm successfully solved all problems optimally within a short computing time. Notably, ACETS discovered three best new solutions for benchmark problems, specifically for Asymmetric 500A-1, Asymmetric 750A-1, and Symmetric 750B-4, underscoring its innovative and robust nature.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

北京阿比特科技有限公司