亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the trajectory planning problem for search and coverage missions with an Unmanned Aerial Vehicle (UAV). The objective is to devise optimal coverage trajectories based on a utility map describing prior region information, assumed to be effectively approximated by a Gaussian Mixture Model (GMM). We introduce a Model Predictive Control (MPC) algorithm employing a relaxed formulation that promotes the exploration of the map by preventing the UAV from revisiting previously covered areas. This is achieved by penalizing intersections between the UAV's visibility regions along its trajectory. The algorithm is assessed in MATLAB and validated in Gazebo, as well as in outdoor experimental tests. The results show that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.

相關內容

This paper addresses the problem of scalability for a cell-free massive MIMO (CF-mMIMO) system performing Integrated Sensing and Communications (ISAC). Specifically, the case in which a large number of access points (APs) are deployed to perform simultaneous communication with mobile users and surveillance of the surrounding environment in the same time-frequency slot is considered, and a target-centric approach on top of the user-centric approach used for communication services is introduced. Consideration of other practical aspects such as the fronthaul load and scanning protocol issues are also treated in the paper. The proposed scalable ISAC-enabled system has lower levels of system complexity, permits to manage the case in which multiple targets are to be tracked/sensed, and achieves performance levels superior or in some cases close to those of the non-scalable solutions.

This paper explores SynTOD, a new synthetic data generation approach for developing end-to-end Task-Oriented Dialogue (TOD) Systems capable of handling complex tasks such as intent classification, slot filling, conversational question-answering, and retrieval-augmented response generation, without relying on crowdsourcing or real-world data. SynTOD utilizes a state transition graph to define the desired behavior of a TOD system and generates diverse, structured conversations through random walks and response simulation using large language models (LLMs). In our experiments, using graph-guided response simulations leads to significant improvements in intent classification, slot filling and response relevance compared to naive single-prompt simulated conversations. We also investigate the end-to-end TOD effectiveness of different base and instruction-tuned LLMs, with and without the constructed synthetic conversations. Finally, we explore how various LLMs can evaluate responses in a TOD system and how well they are correlated with human judgments. Our findings pave the path towards quick development and evaluation of domain-specific TOD systems. We release our datasets, models, and code for research purposes.

Content Warning: This paper contains examples of misgendering and erasure that could be offensive and potentially triggering. Misgendering, the act of incorrectly addressing someone's gender, inflicts serious harm and is pervasive in everyday technologies, yet there is a notable lack of research to combat it. We are the first to address this lack of research into interventions for misgendering by conducting a survey of gender-diverse individuals in the US to understand perspectives about automated interventions for text-based misgendering. Based on survey insights on the prevalence of misgendering, desired solutions, and associated concerns, we introduce a misgendering interventions task and evaluation dataset, MisgenderMender. We define the task with two sub-tasks: (i) detecting misgendering, followed by (ii) correcting misgendering where misgendering is present in domains where editing is appropriate. MisgenderMender comprises 3790 instances of social media content and LLM-generations about non-cisgender public figures, annotated for the presence of misgendering, with additional annotations for correcting misgendering in LLM-generated text. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlighting challenges for future models to address. We release the full dataset, code, and demo at //tamannahossainkay.github.io/misgendermender/.

This paper introduces OccFusion, a straightforward and efficient sensor fusion framework for predicting 3D occupancy. A comprehensive understanding of 3D scenes is crucial in autonomous driving, and recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, existing methods for 3D occupancy prediction heavily rely on surround-view camera images, making them susceptible to changes in lighting and weather conditions. By integrating features from additional sensors, such as lidar and surround view radars, our framework enhances the accuracy and robustness of occupancy prediction, resulting in top-tier performance on the nuScenes benchmark. Furthermore, extensive experiments conducted on the nuScenes dataset, including challenging night and rainy scenarios, confirm the superior performance of our sensor fusion strategy across various perception ranges. The code for this framework will be made available at //github.com/DanielMing123/OCCFusion.

This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks. In the context of dense matching, many works benefit from one of two forms of aggregation: feature aggregation, which pertains to the alignment of similar features, or cost aggregation, a procedure aimed at instilling coherence in the flow estimates across neighboring pixels. In this work, we first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes. We then introduce a simple yet effective architecture that harnesses self- and cross-attention mechanisms to show that our approach unifies feature aggregation and cost aggregation and effectively harnesses the strengths of both techniques. Within the proposed attention layers, the features and cost volume both complement each other, and the attention layers are interleaved through a coarse-to-fine design to further promote accurate correspondence estimation. Finally at inference, our network produces multi-scale predictions, computes their confidence scores, and selects the most confident flow for final prediction. Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.

In this paper, we establish the second-order randomized identification capacity (RID capacity) of the Additive White Gaussian Noise Channel (AWGNC). On the one hand, we obtain a refined version of Hayashi's theorem to prove the achievability part. On the other, we investigate the relationship between identification and channel resolvability, then we propose a finer quantization method to prove the converse part. Consequently, the second-order RID capacity of the AWGNC has the same form as the second-order transmission capacity. The only difference is that the maximum number of messages in RID \emph{scales double exponentially} in the blocklength.

The paper tackles the issue of mapping logic axioms formalised in the Ontology Web Language (OWL) within the Object-Oriented Programming (OOP) paradigm. The issues of mapping OWL axioms hierarchies and OOP objects hierarchies are due to OWL-based reasoning algorithms, which might change an OWL hierarchy at runtime; instead, OOP hierarchies are usually defined as static structures. Although programming paradigms based on reflection allow changing the OOP hierarchies at runtime and mapping OWL axioms dynamically, there are no currently available mechanisms that do not limit the reasoning algorithms. Thus, the factory-based paradigm is typically used since it decouples the OWL and OOP hierarchies. However, the factory inhibits OOP polymorphism and introduces a paradigm shift with respect to widely accepted OOP paradigms. We present the OWLOOP API, which exploits the factory to not limit reasoning algorithms, and it provides novel OOP interfaces concerning the axioms in an ontology. OWLOOP is designed to limit the paradigm shift required for using ontologies while improving, through OOP-like polymorphism, the modularity of software architectures that exploit logic reasoning. The paper details our OWL to OOP mapping mechanism, and it shows the benefits and limitations of OWLOOP through examples concerning a robot in a smart environment.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司