Dynamic scene graph generation (SGG) focuses on detecting objects in a video and determining their pairwise relationships. Existing dynamic SGG methods usually suffer from several issues, including 1) Contextual noise, as some frames might contain occluded and blurred objects. 2) Label bias, primarily due to the high imbalance between a few positive relationship samples and numerous negative ones. Additionally, the distribution of relationships exhibits a long-tailed pattern. To address the above problems, in this paper, we introduce a network named TD$^2$-Net that aims at denoising and debiasing for dynamic SGG. Specifically, we first propose a denoising spatio-temporal transformer module that enhances object representation with robust contextual information. This is achieved by designing a differentiable Top-K object selector that utilizes the gumbel-softmax sampling strategy to select the relevant neighborhood for each object. Second, we introduce an asymmetrical reweighting loss to relieve the issue of label bias. This loss function integrates asymmetry focusing factors and the volume of samples to adjust the weights assigned to individual samples. Systematic experimental results demonstrate the superiority of our proposed TD$^2$-Net over existing state-of-the-art approaches on Action Genome databases. In more detail, TD$^2$-Net outperforms the second-best competitors by 12.7 \% on mean-Recall@10 for predicate classification.
Constructing photo-realistic Free-Viewpoint Videos (FVVs) of dynamic scenes from multi-view videos remains a challenging endeavor. Despite the remarkable advancements achieved by current neural rendering techniques, these methods generally require complete video sequences for offline training and are not capable of real-time rendering. To address these constraints, we introduce 3DGStream, a method designed for efficient FVV streaming of real-world dynamic scenes. Our method achieves fast on-the-fly per-frame reconstruction within 12 seconds and real-time rendering at 200 FPS. Specifically, we utilize 3D Gaussians (3DGs) to represent the scene. Instead of the na\"ive approach of directly optimizing 3DGs per-frame, we employ a compact Neural Transformation Cache (NTC) to model the translations and rotations of 3DGs, markedly reducing the training time and storage required for each FVV frame. Furthermore, we propose an adaptive 3DG addition strategy to handle emerging objects in dynamic scenes. Experiments demonstrate that 3DGStream achieves competitive performance in terms of rendering speed, image quality, training time, and model storage when compared with state-of-the-art methods.
Entity alignment (EA) aims to identify entities across different knowledge graphs that represent the same real-world objects. Recent embedding-based EA methods have achieved state-of-the-art performance in EA yet faced interpretability challenges as they purely rely on the embedding distance and neglect the logic rules behind a pair of aligned entities. In this paper, we propose the Align-Subgraph Entity Alignment (ASGEA) framework to exploit logic rules from Align-Subgraphs. ASGEA uses anchor links as bridges to construct Align-Subgraphs and spreads along the paths across KGs, which distinguishes it from the embedding-based methods. Furthermore, we design an interpretable Path-based Graph Neural Network, ASGNN, to effectively identify and integrate the logic rules across KGs. We also introduce a node-level multi-modal attention mechanism coupled with multi-modal enriched anchors to augment the Align-Subgraph. Our experimental results demonstrate the superior performance of ASGEA over the existing embedding-based methods in both EA and Multi-Modal EA (MMEA) tasks.
Recently, video generation has achieved significant rapid development based on superior text-to-image generation techniques. In this work, we propose a high fidelity framework for image-to-video generation, named AtomoVideo. Based on multi-granularity image injection, we achieve higher fidelity of the generated video to the given image. In addition, thanks to high quality datasets and training strategies, we achieve greater motion intensity while maintaining superior temporal consistency and stability. Our architecture extends flexibly to the video frame prediction task, enabling long sequence prediction through iterative generation. Furthermore, due to the design of adapter training, our approach can be well combined with existing personalized models and controllable modules. By quantitatively and qualitatively evaluation, AtomoVideo achieves superior results compared to popular methods, more examples can be found on our project website: //atomo-video.github.io/.
Recent advancements in multimodal Human-Robot Interaction (HRI) datasets have highlighted the fusion of speech and gesture, expanding robots' capabilities to absorb explicit and implicit HRI insights. However, existing speech-gesture HRI datasets often focus on elementary tasks, like object pointing and pushing, revealing limitations in scaling to intricate domains and prioritizing human command data over robot behavior records. To bridge these gaps, we introduce NatSGD, a multimodal HRI dataset encompassing human commands through speech and gestures that are natural, synchronized with robot behavior demonstrations. NatSGD serves as a foundational resource at the intersection of machine learning and HRI research, and we demonstrate its effectiveness in training robots to understand tasks through multimodal human commands, emphasizing the significance of jointly considering speech and gestures. We have released our dataset, simulator, and code to facilitate future research in human-robot interaction system learning; access these resources at //www.snehesh.com/natsgd/
Deep neural network-based Synthetic Aperture Radar (SAR) target recognition models are susceptible to adversarial examples. Current adversarial example generation methods for SAR imagery primarily operate in the 2D digital domain, known as image adversarial examples. Recent work, while considering SAR imaging scatter mechanisms, fails to account for the actual imaging process, rendering attacks in the three-dimensional physical domain infeasible, termed pseudo physics adversarial examples. To address these challenges, this paper proposes SAR-AE-SFP-Attack, a method to generate real physics adversarial examples by altering the scattering feature parameters of target objects. Specifically, we iteratively optimize the coherent energy accumulation of the target echo by perturbing the reflection coefficient and scattering coefficient in the scattering feature parameters of the three-dimensional target object, and obtain the adversarial example after echo signal processing and imaging processing in the RaySAR simulator. Experimental results show that compared to digital adversarial attack methods, SAR-AE-SFP Attack significantly improves attack efficiency on CNN-based models (over 30\%) and Transformer-based models (over 13\%), demonstrating significant transferability of attack effects across different models and perspectives.
Variable scene layouts and coexisting objects across scenes make indoor scene recognition still a challenging task. Leveraging object information within scenes to enhance the distinguishability of feature representations has emerged as a key approach in this domain. Currently, most object-assisted methods use a separate branch to process object information, combining object and scene features heuristically. However, few of them pay attention to interpretably handle the hidden discriminative knowledge within object information. In this paper, we propose to leverage discriminative object knowledge to enhance scene feature representations. Initially, we capture the object-scene discriminative relationships from a probabilistic perspective, which are transformed into an Inter-Object Discriminative Prototype (IODP). Given the abundant prior knowledge from IODP, we subsequently construct a Discriminative Graph Network (DGN), in which pixel-level scene features are defined as nodes and the discriminative relationships between node features are encoded as edges. DGN aims to incorporate inter-object discriminative knowledge into the image representation through graph convolution and mapping operations (GCN). With the proposed IODP and DGN, we obtain state-of-the-art results on several widely used scene datasets, demonstrating the effectiveness of the proposed approach.
Document Visual Question Answering (DVQA) is a task that involves responding to queries based on the content of images. Existing work is limited to locating information within a single page and does not facilitate cross-page question-and-answer interaction. Furthermore, the token length limitation imposed on inputs to the model may lead to truncation of segments pertinent to the answer. In this study, we introduce a simple but effective methodology called CFRet-DVQA, which focuses on retrieval and efficient tuning to address this critical issue effectively. For that, we initially retrieve multiple segments from the document that correlate with the question at hand. Subsequently, we leverage the advanced reasoning abilities of the large language model (LLM), further augmenting its performance through instruction tuning. This approach enables the generation of answers that align with the style of the document labels. The experiments demonstrate that our methodology achieved state-of-the-art or competitive results with both single-page and multi-page documents in various fields.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.