亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by the success of recent data augmentation methods for signals which act on time-frequency representations, we introduce an operator which convolves the short-time Fourier transform of a signal with a specified kernel. Analytical properties including boundedness, compactness and positivity are investigated from the perspective of time-frequency analysis. A convolutional neural network and a vision transformer are trained to classify audio signals using spectrograms with different augmentation setups, including the above mentioned time-frequency blurring operator, with results indicating that the operator can significantly improve test performance, especially in the data-starved regime.

相關內容

數據增強在機器學習領域多指采用一些方法(比如數據蒸餾,正負樣本均衡等)來提高模型數據集的質量,增強數據。

Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.

With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the convex hull of the set of binary points satisfying a collection of equations containing pseudo-Boolean functions. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.

In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for solving arbitrary dimensional global quasiperiodic systems. Based on the projection method (PM), IWFPM further utilizes the concentrated distribution of Fourier coefficients to filter out relevant spectral points using an irrational window. Moreover, a corresponding index-shift transform is designed to make the Fast Fourier Transform available. The corresponding error analysis on the function approximation level is also given. We apply IWFPM to 1D, 2D, and 3D quasiperiodic Schr\"odinger eigenproblems to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. Furthermore, the widespread existence of such spectral point distribution feature can endow IWFPM with significant potential for broader applications in quasiperiodic systems.

In the context of high-dimensional Gaussian linear regression for ordered variables, we study the variable selection procedure via the minimization of the penalized least-squares criterion. We focus on model selection where the penalty function depends on an unknown multiplicative constant commonly calibrated for prediction. We propose a new proper calibration of this hyperparameter to simultaneously control predictive risk and false discovery rate. We obtain non-asymptotic bounds on the False Discovery Rate with respect to the hyperparameter and we provide an algorithm to calibrate it. This algorithm is based on quantities that can typically be observed in real data applications. The algorithm is validated in an extensive simulation study and is compared with several existing variable selection procedures. Finally, we study an extension of our approach to the case in which an ordering of the variables is not available.

User experience on mobile devices is constrained by limited battery capacity and processing power, but 6G technology advancements are diving rapidly into mobile technical evolution. Mobile edge computing (MEC) offers a solution, offloading computationally intensive tasks to edge cloud servers, reducing battery drain compared to local processing. The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays. This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage. Numerical results show potential improvement at 33\% for every 1000 iteration. Addressing prediction model division and velocity accuracy issues is crucial for better results. A plan for further improvement and achieving objectives is outlined for the upcoming work phase.

Blocking, a special case of rerandomization, is routinely implemented in the design stage of randomized experiments to balance the baseline covariates. This study proposes a regression adjustment method based on the least absolute shrinkage and selection operator (Lasso) to efficiently estimate the average treatment effect in randomized block experiments with high-dimensional covariates. We derive the asymptotic properties of the proposed estimator and outline the conditions under which this estimator is more efficient than the unadjusted one. We provide a conservative variance estimator to facilitate valid inferences. Our framework allows one treated or control unit in some blocks and heterogeneous propensity scores across blocks, thus including paired experiments and finely stratified experiments as special cases. We further accommodate rerandomized experiments and a combination of blocking and rerandomization. Moreover, our analysis allows both the number of blocks and block sizes to tend to infinity, as well as heterogeneous treatment effects across blocks without assuming a true outcome data-generating model. Simulation studies and two real-data analyses demonstrate the advantages of the proposed method.

Learning operators mapping between infinite-dimensional Banach spaces via neural networks has attracted a considerable amount of attention in recent years. In this paper, we propose an interfaced operator network (IONet) to solve parametric elliptic interface PDEs, where different coefficients, source terms, and boundary conditions are considered as input features. To capture the discontinuities in both the input functions and the output solutions across the interface, IONet divides the entire domain into several separate subdomains according to the interface and uses multiple branch nets and trunk nets. Each branch net extracts latent representations of input functions at a fixed number of sensors on a specific subdomain, and each trunk net is responsible for output solutions on one subdomain. Additionally, tailored physics-informed loss of IONet is proposed to ensure physical consistency, which greatly reduces the training dataset requirement and makes IONet effective without any paired input-output observations inside the computational domain. Extensive numerical studies demonstrate that IONet outperforms existing state-of-the-art deep operator networks in terms of accuracy and versatility.

A non-linear complex system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic, as each provides only a partial view and much information is lost during data extraction. Combining multiple diagnostics also results in imperfect projections of the system's physics. By identifying hidden inter-correlations between diagnostics, we can leverage mutual support to fill in these gaps, but uncovering these inter-correlations analytically is too complex. We introduce a groundbreaking machine learning methodology to address this issue. Our multimodal approach generates super resolution data encompassing multiple physics phenomena, capturing detailed structural evolution and responses to perturbations previously unobservable. This methodology addresses a critical problem in fusion plasmas: the Edge Localized Mode (ELM), a plasma instability that can severely damage reactor walls. One method to stabilize ELM is using resonant magnetic perturbation to trigger magnetic islands. However, low spatial and temporal resolution of measurements limits the analysis of these magnetic islands due to their small size, rapid dynamics, and complex interactions within the plasma. With super-resolution diagnostics, we can experimentally verify theoretical models of magnetic islands for the first time, providing unprecedented insights into their role in ELM stabilization. This advancement aids in developing effective ELM suppression strategies for future fusion reactors like ITER and has broader applications, potentially revolutionizing diagnostics in fields such as astronomy, astrophysics, and medical imaging.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司