We analyze the conforming approximation of the time-harmonic Maxwell's equations using N\'ed\'elec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.
We construct a Convolution Quadrature (CQ) scheme for the quasilinear subdiffusion equation and supply it with the fast and oblivious implementation. In particular we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the Finite Element Method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. As a passing result, we also obtain a discrete Gronwall inequality for the CQ, which is a crucial ingredient of our convergence proof based on the energy method. The paper is concluded with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.
In quantum mechanics, the Rosen-Zener model represents a two-level quantum system. Its generalization to multiple degenerate sets of states leads to larger non-autonomous linear system of ordinary differential equations (ODEs). We propose a new method for computing the solution operator of this system of ODEs. This new method is based on a recently introduced expression of the solution in terms of an infinite matrix equation, which can be efficiently approximated by combining truncation, fixed point iterations, and low-rank approximation. This expression is possible thanks to the so-called $\star$-product approach for linear ODEs. In the numerical experiments, the new method's computing time scales linearly with the model's size. We provide a first partial explanation of this linear behavior.
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path. While interior point methods follow the central path with an iterative algorithm that works with successive linearizations of the perturbed KKT conditions, we perform a single simulation working directly with the nonlinear complementarity equations. Combining our approach with iterative refinement techniques, we obtain an exact solution to a linear optimization problem involving $m$ constraints and $n$ variables using at most $\mathcal{O} \left( (m + n) \text{nnz} (A) \kappa (\mathcal{M}) L \cdot \text{polylog} \left(m, n, \kappa (\mathcal{M}) \right) \right)$ elementary gates and $\mathcal{O} \left( \text{nnz} (A) L \right)$ classical arithmetic operations, where $ \text{nnz} (A)$ is the total number of non-zero elements found in the constraint matrix, $L$ denotes binary input length of the problem data, and $\kappa (\mathcal{M})$ is a condition number that depends only on the problem data.
A new linear relaxation system for nonconservative hyperbolic systems is introduced, in which a nonlocal source term accounts for the nonconservative product of the original system. Using an asymptotic analysis the relaxation limit and its stability are investigated. It is shown that the path-conservative Lax-Friedrichs scheme arises from a discrete limit of an implicit-explicit scheme for the relaxation system. The relaxation approach is further employed to couple two nonconservative systems at a static interface. A coupling strategy motivated from conservative Kirchhoff conditions is introduced and a corresponding Riemann solver provided. A fully discrete scheme for coupled nonconservative products is derived and studied in terms of path-conservation. Numerical experiments applying the approach to a coupled model of vascular blood flow are presented.
Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic differential equations under the condition $R < 1$, where $R$ measures the ratio of nonlinearity to dissipation using the $\ell_2$ norm. Here we develop an efficient quantum algorithm based on [1] for reaction-diffusion equations, a class of nonlinear partial differential equations (PDEs). To achieve this, we improve upon the Carleman linearization approach introduced in [1] to obtain a faster convergence rate under the condition $R_D < 1$, where $R_D$ measures the ratio of nonlinearity to dissipation using the $\ell_{\infty}$ norm. Since $R_D$ is independent of the number of spatial grid points $n$ while $R$ increases with $n$, the criterion $R_D<1$ is significantly milder than $R<1$ for high-dimensional systems and can stay convergent under grid refinement for approximating PDEs. As applications of our quantum algorithm we consider the Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics. In particular, we show how to estimate the mean square kinetic energy in the solution by postprocessing the quantum state that encodes it to extract derivative information.
We study time integration schemes for $\dot H^1$-solutions to the energy-(sub)critical semilinear wave equation on $\mathbb{R}^3$. We show first-order convergence in $L^2$ for the Lie splitting and convergence order $3/2$ for a corrected Lie splitting. To our knowledge this includes the first error analysis performed for scaling-critical dispersive problems. Our approach is based on discrete-time Strichartz estimates, including one (with a logarithmic correction) for the case of the forbidden endpoint. Our schemes and the Strichartz estimates contain frequency cut-offs.
We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C^4$-smooth isogeometric spline space [25] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L^2$-norm as well as to equivalents of the $H^s$-seminorms for $1 \leq s \leq 4$.
In this work, we study some mathematical features for the action ground states of the defocusing nonlinear Schr\"odinger equation with possible rotation. Main attention is paid to characterizing the relation between the action ground states and the energy ground states. Theoretical equivalence and non-equivalence results have been established. Asymptotic behaviours of the physical quantities are derived in some limiting parameter regimes. Numerical evidence of non-equivalence is observed and numerical explorations for vortices phenomena in action ground states are done.
Implicit models for magnetic coenergy have been proposed by Pera et al. to describe the anisotropic nonlinear material behavior of electrical steel sheets. This approach aims at predicting magnetic response for any direction of excitation by interpolating measured of B--H curves in the rolling and transverse directions. In an analogous manner, an implicit model for magnetic energy is proposed. We highlight some mathematical properties of these implicit models and discuss their numerical realization, outline the computation of magnetic material laws via implicit differentiation, and discuss the potential use for finite element analysis in the context of nonlinear magnetostatics.
For a linear difference equation with the coefficients being computable sequences, we establish algorithmic undecidability of the problem of determining the dimension of the solution space including the case when some additional prior information on the dimension is available.