Large language models and multimodal large language models have revolutionized artificial intelligence recently. An increasing number of regions are now embracing these advanced technologies. Within this context, robot coding education is garnering increasing attention. To teach young children how to code and compete in robot challenges, large language models are being utilized for robot code explanation, generation, and modification. In this paper, we highlight an important trend in robot coding education. We test several mainstream large language models on both traditional coding tasks and the more challenging task of robot code generation, which includes block diagrams. Our results show that GPT-4V outperforms other models in all of our tests but struggles with generating block diagram images.
With the recent development of large language models (LLMs), models that focus on certain domains and languages have been discussed for their necessity. There is also a growing need for benchmarks to evaluate the performance of current LLMs in each domain. Therefore, in this study, we constructed a benchmark comprising multiple tasks specific to the Japanese and financial domains and performed benchmark measurements on some models. Consequently, we confirmed that GPT-4 is currently outstanding, and that the constructed benchmarks function effectively. According to our analysis, our benchmark can differentiate benchmark scores among models in all performance ranges by combining tasks with different difficulties.
Recent large-scale vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and generating textual descriptions for visual content. However, these models lack an understanding of user-specific concepts. In this work, we take a first step toward the personalization of VLMs, enabling them to learn and reason over user-provided concepts. For example, we explore whether these models can learn to recognize you in an image and communicate what you are doing, tailoring the model to reflect your personal experiences and relationships. To effectively recognize a variety of user-specific concepts, we augment the VLM with external concept heads that function as toggles for the model, enabling the VLM to identify the presence of specific target concepts in a given image. Having recognized the concept, we learn a new concept embedding in the intermediate feature space of the VLM. This embedding is tasked with guiding the language model to naturally integrate the target concept in its generated response. We apply our technique to BLIP-2 and LLaVA for personalized image captioning and further show its applicability for personalized visual question-answering. Our experiments demonstrate our ability to generalize to unseen images of learned concepts while preserving the model behavior on unrelated inputs.
Large language models(LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences. However, this process can inadvertently lead to these models acquiring biases and stereotypes prevalent in society. Prior research has typically tackled the issue of bias through a one-dimensional perspective, concentrating either on locating or mitigating it. This limited perspective has created obstacles in facilitating research on bias to synergistically complement and progressively build upon one another. In this study, we integrate the processes of locating and mitigating bias within a unified framework. Initially, we use causal mediation analysis to trace the causal effects of different components' activation within a large language model. Building on this, we propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns, and compare it against two baselines on three gender bias datasets and seven knowledge competency test datasets. The experimental results indicate that the primary contributors to gender bias are the bottom MLP modules acting on the last token of occupational pronouns and the top attention module acting on the final word in the sentence. Furthermore, LSDM mitigates gender bias in the model more effectively than the other baselines, while fully preserving the model's capabilities in all other aspects.
Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints from different roles in a typical software development life-cycle, including both developers and testers. To this end, this paper introduces an approach to employ LLMs to act as different roles to simulate real-life code review process, engaging in discussions towards a consensus on the existence and classification of vulnerabilities in the code. Preliminary evaluation of the proposed approach indicates a 4.73% increase in the precision rate, 58.9% increase in the recall rate, and a 28.1% increase in the F1 score.
The abilities of large language models (LLMs) have recently progressed to unprecedented levels, paving the way to novel applications in a wide variety of areas. In computer vision, LLMs can be used to prime vision-language tasks such image captioning and visual question answering when coupled with pre-trained vision backbones. While different approaches have been explored to interface LLMs with ``perceptual backbones'' that process, e.g., visual or audio data, they are often explored for different tasks, different datasets, and using different perceptual backbones and language models, hindering direct comparison of the interfacing mechanisms. To remedy this lack of comparability between methods, we present an extensive experimental evaluation of different interfacing mechanisms, across multiple tasks (including image, video, and audio captioning as well as visual question answering), datasets and backbones, paying special attention to low-data settings. We find improved performance using existing mechanisms over state-of-the-art results, and identify a new interfacing mechanism that yields (near) optimal results across different tasks, while obtaining a 4x reduction in training time.
Large language models (LLMs) have reached human-like proficiency in generating diverse textual content, underscoring the necessity for effective fake text detection to avoid potential risks such as fake news in social media. Previous research has mostly tested single models on in-distribution datasets, limiting our understanding of how these models perform on different types of data for LLM-generated text detection task. We researched this by testing five specialized transformer-based models on both in-distribution and out-of-distribution datasets to better assess their performance and generalizability. Our results revealed that single transformer-based classifiers achieved decent performance on in-distribution dataset but limited generalization ability on out-of-distribution dataset. To improve it, we combined the individual classifiers models using adaptive ensemble algorithms, which improved the average accuracy significantly from 91.8% to 99.2% on an in-distribution test set and from 62.9% to 72.5% on an out-of-distribution test set. The results indicate the effectiveness, good generalization ability, and great potential of adaptive ensemble algorithms in LLM-generated text detection.
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can parse natural queries about the visual content and generate human-like outputs. In this work, we explore the ability of these models to demonstrate human-like reasoning based on the perceived information. To address a crucial concern regarding the extent to which their reasoning capabilities are fully consistent and grounded, we also measure the reasoning consistency of these models. We achieve this by proposing a chain-of-thought (CoT) based consistency measure. However, such an evaluation requires a benchmark that encompasses both high-level inference and detailed reasoning chains, which is costly. We tackle this challenge by proposing a LLM-Human-in-the-Loop pipeline, which notably reduces cost while simultaneously ensuring the generation of a high-quality dataset. Based on this pipeline and the existing coarse-grained annotated dataset, we build the CURE benchmark to measure both the zero-shot reasoning performance and consistency of VLMs. We evaluate existing state-of-the-art VLMs, and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency, indicating that substantial efforts are required to enable VLMs to perform visual reasoning as systematically and consistently as humans. As an early step, we propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs. The first stage involves employing supervised fine-tuning of VLMs using step-by-step reasoning samples automatically generated by LLMs. In the second stage, we further augment the training process by incorporating feedback provided by LLMs to produce reasoning chains that are highly consistent and grounded. We empirically highlight the effectiveness of our framework in both reasoning performance and consistency.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Intent classification and slot filling are two essential tasks for natural language understanding. They often suffer from small-scale human-labeled training data, resulting in poor generalization capability, especially for rare words. Recently a new language representation model, BERT (Bidirectional Encoder Representations from Transformers), facilitates pre-training deep bidirectional representations on large-scale unlabeled corpora, and has created state-of-the-art models for a wide variety of natural language processing tasks after simple fine-tuning. However, there has not been much effort on exploring BERT for natural language understanding. In this work, we propose a joint intent classification and slot filling model based on BERT. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on several public benchmark datasets, compared to the attention-based recurrent neural network models and slot-gated models.