亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Serverless computing has emerged as an attractive paradigm due to the efficiency of development and the ease of deployment without managing any underlying infrastructure. Nevertheless, serverless computing approaches face numerous challenges to unlock their full potential in hybrid environments. To gain a deeper understanding and firsthand knowledge of serverless computing in edge-cloud deployments, we review the current state of open-source serverless platforms and compare them based on predefined requirements. We then design and implement a serverless computing platform with a novel edge orchestration technique that seamlessly deploys serverless functions across the edge and cloud environments on top of the Knative serverless platform. Moreover, we propose an offloading strategy for edge environments and four different functions for experimentation and showcase the performance benefits of our solution. Our results demonstrate that such an approach can efficiently utilize both cloud and edge resources by dynamically offloading functions from the edge to the cloud during high activity, while reducing the overall application latency and increasing request throughput compared to an edge-only deployment.

相關內容

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

For reinforcement learning on complex stochastic systems, it is desirable to effectively leverage the information from historical samples collected in previous iterations to accelerate policy optimization. Classical experience replay, while effective, treats all observations uniformly, neglecting their relative importance. To address this limitation, we introduce a novel Variance Reduction Experience Replay (VRER) framework, enabling the selective reuse of relevant samples to improve policy gradient estimation. VRER, as an adaptable method that can seamlessly integrate with different policy optimization algorithms, forms the foundation of our sample-efficient off-policy algorithm known as Policy Optimization with VRER (PG-VRER). Furthermore, the lack of a rigorous theoretical understanding of the experience replay method in the literature motivates us to introduce a novel theoretical framework that accounts for sample dependencies induced by Markovian noise and behavior policy interdependencies. This framework is then employed to analyze the finite-time convergence of our VRER-based policy optimization algorithm, revealing a crucial bias-variance trade-off in policy gradient estimates: the reuse of old experience introduces increased bias while simultaneously reducing gradient variance. Extensive experiments have shown that VRER offers a notable acceleration in learning optimal policies and enhances the performance of state-of-the-art (SOTA) policy optimization approaches.

Distributionally robust optimization has emerged as an attractive way to train robust machine learning models, capturing data uncertainty and distribution shifts. Recent statistical analyses have proved that robust models built from Wasserstein ambiguity sets have nice generalization guarantees, breaking the curse of dimensionality. However, these results are obtained in specific cases, at the cost of approximations, or under assumptions difficult to verify in practice. In contrast, we establish, in this article, exact generalization guarantees that cover all practical cases, including any transport cost function and any loss function, potentially non-convex and nonsmooth. For instance, our result applies to deep learning, without requiring restrictive assumptions. We achieve this result through a novel proof technique that combines nonsmooth analysis rationale with classical concentration results. Our approach is general enough to extend to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations.

Semantic communication aims to transmit meaningful and effective information, rather than focusing on individual symbols or bits. This results in benefits like reduced latency, bandwidth usage, and higher throughput compared with traditional communication. However, semantic communication poses significant challenges due to the need for universal metrics to benchmark the joint effects of semantic information loss and practical energy consumption. This research presents a novel multi-objective loss function named "Energy-Optimized Semantic Loss" (EOSL), addressing the challenge of balancing semantic information loss and energy consumption. Through comprehensive experiments on transformer models, including CPU and GPU energy usage, it is demonstrated that EOSL-based encoder model selection can save up to 90% of energy while achieving a 44% improvement in semantic similarity performance during inference in this experiment. This work paves the way for energy-efficient neural network selection and the development of greener semantic communication architectures.

Molecular communication (MC) has promising potential and a wide range of applications. However, odor-based communication which is common in nature, has not been sufficiently examined within the context of MC, yet. In this paper, we introduce a novel approach for implementing odor-based MC systems. We propose a new modulation scheme called Odor Perceptual Shift Keying (OPSK), which encodes information by shifting the perceptual values of odor molecules in pleasantness, intensity and edibility dimensions. We construct a system which transmits OPSK modulated signals between a transmitter and receiver. We conduct analyses on the system parameters to simulate performance metrics such as symbol error rate (SER) and symbol rate (SR). Our analyses indicate that OPSK has a potential for realizing odor-based MC systems. We find that under certain conditions, reliable odor-based MC systems can be implemented using OPSK across a variety of distance ranges from millimeters up to kilometers. Additionally, we introduce adaptive symbol transmission to our system for input symbol sequences featuring symbols that occur with unequal probabilities. We further demonstrate that the proposed algorithm at the transmitter side can achieve extended operation times.

With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.

Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information. To address this limitation, in this paper, we propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information. Our SCM framework comprises three key components: an LLM-based agent serving as the backbone of the framework, a memory stream storing agent memories, and a memory controller updating memories and determining when and how to utilize memories from memory stream. Additionally, the proposed SCM is able to process ultra-long texts without any modification or fine-tuning, which can integrate with any instruction following LLMs in a plug-and-play paradigm. Furthermore, we annotate a dataset to evaluate the effectiveness of SCM for handling lengthy inputs. The annotated dataset covers three tasks: long-term dialogues, book summarization, and meeting summarization. Experimental results demonstrate that our method achieves better retrieval recall and generates more informative responses compared to competitive baselines in long-term dialogues. (//github.com/wbbeyourself/SCM4LLMs)

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司