Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we advance existing research by developing a mechanistic model for the mosquito life cycle that accurately accounts for the non-Markovian nature of the process. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area. Furthermore, we demonstrate how to reduce the model to the corresponding differential equations, enabling us to utilize existing methods for analyzing the system and fitting the model to observations. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models.
Greenhouse gases are pivotal drivers of climate change, necessitating precise quantification and source identification to foster mitigation strategies. We introduce GeoViT, a compact vision transformer model adept in processing satellite imagery for multimodal segmentation, classification, and regression tasks targeting CO2 and NO2 emissions. Leveraging GeoViT, we attain superior accuracy in estimating power generation rates, fuel type, plume coverage for CO2, and high-resolution NO2 concentration mapping, surpassing previous state-of-the-art models while significantly reducing model size. GeoViT demonstrates the efficacy of vision transformer architectures in harnessing satellite-derived data for enhanced GHG emission insights, proving instrumental in advancing climate change monitoring and emission regulation efforts globally.
Mild Traumatic Brain Injury (mTBI) is a common and challenging condition to diagnose accurately. Timely and precise diagnosis is essential for effective treatment and improved patient outcomes. Traditional diagnostic methods for mTBI often have limitations in terms of accuracy and sensitivity. In this study, we introduce an innovative approach to enhance mTBI diagnosis using 3D Computed Tomography (CT) images and a metric learning technique trained with triplet loss. To address these challenges, we propose a Residual Triplet Convolutional Neural Network (RTCNN) model to distinguish between mTBI cases and healthy ones by embedding 3D CT scans into a feature space. The triplet loss function maximizes the margin between similar and dissimilar image pairs, optimizing feature representations. This facilitates better context placement of individual cases, aids informed decision-making, and has the potential to improve patient outcomes. Our RTCNN model shows promising performance in mTBI diagnosis, achieving an average accuracy of 94.3%, a sensitivity of 94.1%, and a specificity of 95.2%, as confirmed through a five-fold cross-validation. Importantly, when compared to the conventional Residual Convolutional Neural Network (RCNN) model, the RTCNN exhibits a significant improvement, showcasing a remarkable 22.5% increase in specificity, a notable 16.2% boost in accuracy, and an 11.3% enhancement in sensitivity. Moreover, RTCNN requires lower memory resources, making it not only highly effective but also resource-efficient in minimizing false positives while maximizing its diagnostic accuracy in distinguishing normal CT scans from mTBI cases. The quantitative performance metrics provided and utilization of occlusion sensitivity maps to visually explain the model's decision-making process further enhance the interpretability and transparency of our approach.
Conventional Time Series Classification (TSC) methods are often black boxes that obscure inherent interpretation of their decision-making processes. In this work, we leverage Multiple Instance Learning (MIL) to overcome this issue, and propose a new framework called MILLET: Multiple Instance Learning for Locally Explainable Time series classification. We apply MILLET to existing deep learning TSC models and show how they become inherently interpretable without compromising (and in some cases, even improving) predictive performance. We evaluate MILLET on 85 UCR TSC datasets and also present a novel synthetic dataset that is specially designed to facilitate interpretability evaluation. On these datasets, we show MILLET produces sparse explanations quickly that are of higher quality than other well-known interpretability methods. To the best of our knowledge, our work with MILLET, which is available on GitHub (//github.com/JAEarly/MILTimeSeriesClassification), is the first to develop general MIL methods for TSC and apply them to an extensive variety of domains
In the rapidly evolving landscape of human-robot collaboration, effective communication between humans and robots is crucial for complex task execution. Traditional request-response systems often lack naturalness and may hinder efficiency. In this study, we propose a novel approach that employs human-like conversational interactions for vocal communication between human operators and robots. The framework emphasizes the establishment of a natural and interactive dialogue, enabling human operators to engage in vocal conversations with robots. Through a comparative experiment, we demonstrate the efficacy of our approach in enhancing task performance and collaboration efficiency. The robot's ability to engage in meaningful vocal conversations enables it to seek clarification, provide status updates, and ask for assistance when required, leading to improved coordination and a smoother workflow. The results indicate that the adoption of human-like conversational interactions positively influences the human-robot collaborative dynamic. Human operators find it easier to convey complex instructions and preferences, fostering a more productive and satisfying collaboration experience.
Performance bounds for parameter estimation play a crucial role in statistical signal processing theory and applications. Two widely recognized bounds are the Cram\'{e}r-Rao bound (CRB) in the non-Bayesian framework, and the Bayesian CRB (BCRB) in the Bayesian framework. However, unlike the CRB, the BCRB is asymptotically unattainable in general, and its equality condition is restrictive. This paper introduces an extension of the Bobrovsky--Mayer-Wolf--Zakai class of bounds, also known as the weighted BCRB (WBCRB). The WBCRB is optimized by tuning the weighting function in the scalar case. Based on this result, we propose an asymptotically tight version of the bound called AT-BCRB. We prove that the AT-BCRB is asymptotically attained by the maximum {\it a-posteriori} probability (MAP) estimator. Furthermore, we extend the WBCRB and the AT-BCRB to the case of vector parameters. The proposed bounds are evaluated in several fundamental signal processing examples, such as variance estimation of white Gaussian process, direction-of-arrival estimation, and mean estimation of Gaussian process with unknown variance and prior statistical information. It is shown that unlike the BCRB, the proposed bounds are asymptotically attainable and coincide with the expected CRB (ECRB). The ECRB, which imposes uniformly unbiasedness, cannot serve as a valid lower bound in the Bayesian framework, while the proposed bounds are valid for any estimator.
Timely identification and treatment of rapidly progressing skin cancers can significantly contribute to the preservation of patients' health and well-being. Dermoscopy, a dependable and accessible tool, plays a pivotal role in the initial stages of skin cancer detection. Consequently, the effective processing of digital dermoscopy images holds significant importance in elevating the accuracy of skin cancer diagnoses. Multilevel thresholding is a key tool in medical imaging that extracts objects within the image to facilitate its analysis. In this paper, an enhanced version of the Mud Ring Algorithm hybridized with the Whale Optimization Algorithm, named WMRA, is proposed. The proposed approach utilizes bubble-net attack and mud ring strategy to overcome stagnation in local optima and obtain optimal thresholds. The experimental results show that WMRA is powerful against a cluster of recent methods in terms of fitness, Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE).
Depth estimation plays an important role in the robotic perception system. Self-supervised monocular paradigm has gained significant attention since it can free training from the reliance on depth annotations. Despite recent advancements, existing self-supervised methods still underutilize the available training data, limiting their generalization ability. In this paper, we take two data augmentation techniques, namely Resizing-Cropping and Splitting-Permuting, to fully exploit the potential of training datasets. Specifically, the original image and the generated two augmented images are fed into the training pipeline simultaneously and we leverage them to conduct self-distillation. Additionally, we introduce the detail-enhanced DepthNet with an extra full-scale branch in the encoder and a grid decoder to enhance the restoration of fine details in depth maps. Experimental results demonstrate our method can achieve state-of-the-art performance on the KITTI benchmark, with both raw ground truth and improved ground truth. Moreover, our models also show superior generalization performance when transferring to Make3D and NYUv2 datasets. Our codes are available at //github.com/Sauf4896/BDEdepth.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.