Deterministic methods for motion planning guarantee safety amidst uncertainty in obstacle locations by trying to restrict the robot from operating in any possible location that an obstacle could be in. Unfortunately, this can result in overly conservative behavior. Chance-constrained optimization can be applied to improve the performance of motion planning algorithms by allowing for a user-specified amount of bounded constraint violation. However, state-of-the-art methods rely either on moment-based inequalities, which can be overly conservative, or make it difficult to satisfy assumptions about the class of probability distributions used to model uncertainty. To address these challenges, this work proposes a real-time, risk-aware reachability based motion planning framework called RADIUS. The method first generates a reachable set of parameterized trajectories for the robot offline. At run time, RADIUS computes a closed-form over-approximation of the risk of a collision with an obstacle. This is done without restricting the probability distribution used to model uncertainty to a simple class (e.g., Gaussian). Then, RADIUS performs real-time optimization to construct a trajectory that can be followed by the robot in a manner that is certified to have a risk of collision that is less than or equal to a user-specified threshold. The proposed algorithm is compared to several state-of-the-art chance-constrained and deterministic methods in simulation, and is shown to consistently outperform them in a variety of driving scenarios. A demonstration of the proposed framework on hardware is also provided.
We introduce an information measure, termed clarity, motivated by information entropy, and show that it has intuitive properties relevant to dynamic coverage control and informative path planning. Clarity defines the quality of the information we have about a variable of interest in an environment on a scale of [0, 1], and has useful properties for control and planning such as: (I) clarity lower bounds the expected estimation error of any estimator, and (II) given noisy measurements, clarity monotonically approaches a level q_infty < 1. We establish a connection between coverage controllers and information theory via clarity, suggesting a coverage model that is physically consistent with how information is acquired. Next, we define the notion of perceivability of an environment under a given robotic (or more generally, sensing and control) system, i.e., whether the system has sufficient sensing and actuation capabilities to gather desired information. We show that perceivability relates to the reachability of an augmented system, and derive the corresponding Hamilton-Jacobi-Bellman equations to determine perceivability. In simulations, we demonstrate how clarity is a useful concept for planning trajectories, how perceivability can be determined using reachability analysis, and how a Control Barrier Function (CBF) based controller can dramatically reduce the computational burden.
A robotic platform for mobile manipulation needs to satisfy two contradicting requirements for many real-world applications: A compact base is required to navigate through cluttered indoor environments, while the support needs to be large enough to prevent tumbling or tip over, especially during fast manipulation operations with heavy payloads or forceful interaction with the environment. This paper proposes a novel robot design that fulfills both requirements through a versatile footprint. It can reconfigure its footprint to a narrow configuration when navigating through tight spaces and to a wide stance when manipulating heavy objects. Furthermore, its triangular configuration allows for high-precision tasks on uneven ground by preventing support switches. A model predictive control strategy is presented that unifies planning and control for simultaneous navigation, reconfiguration, and manipulation. It converts task-space goals into whole-body motion plans for the new robot. The proposed design has been tested extensively with a hardware prototype. The footprint reconfiguration allows to almost completely remove manipulation-induced vibrations. The control strategy proves effective in both lab experiment and during a real-world construction task.
Modern robots require accurate forecasts to make optimal decisions in the real world. For example, self-driving cars need an accurate forecast of other agents' future actions to plan safe trajectories. Current methods rely heavily on historical time series to accurately predict the future. However, relying entirely on the observed history is problematic since it could be corrupted by noise, have outliers, or not completely represent all possible outcomes. To solve this problem, we propose a novel framework for generating robust forecasts for robotic control. In order to model real-world factors affecting future forecasts, we introduce the notion of an adversary, which perturbs observed historical time series to increase a robot's ultimate control cost. Specifically, we model this interaction as a zero-sum two-player game between a robot's forecaster and this hypothetical adversary. We show that our proposed game may be solved to a local Nash equilibrium using gradient-based optimization techniques. Furthermore, we show that a forecaster trained with our method performs 30.14% better on out-of-distribution real-world lane change data than baselines.
This paper proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a sub-goal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move towards the goal. Through a series of 3D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized. Multimedia demonstrations are available at //www.youtube.com/watch?v=KneELRT8GzU&list=PLouWbAcP4zIvPgaARrV223lf2eiSR-eSS.
Control Barrier Functions (CBF) are a powerful tool for designing safety-critical controllers and motion planners. The safety requirements are encoded as a continuously differentiable function that maps from state variables to a real value, in which the sign of its output determines whether safety is violated. In practice, the CBFs can be used to enforce safety by imposing itself as a constraint in a Quadratic Program (QP) solved point-wise in time. However, this approach costs computational resources and could lead to infeasibility in solving the QP. In this paper, we propose a novel motion planning framework that combines sampling-based methods with Linear Quadratic Regulator (LQR) and CBFs. Our approach does not require solving the QPs for control synthesis and avoids explicit collision checking during samplings. Instead, it uses LQR to generate optimal controls and CBF to reject unsafe trajectories. To improve sampling efficiency, we employ the Cross-Entropy Method (CEM) for importance sampling (IS) to sample configurations that will enhance the path with higher probability and store computed optimal gain matrices in a hash table to avoid re-computation during rewiring procedure. We demonstrate the effectiveness of our method on nonlinear control affine systems in simulation.
Many sequential decision-making problems that are currently automated, such as those in manufacturing or recommender systems, operate in an environment where there is either little uncertainty, or zero risk of catastrophe. As companies and researchers attempt to deploy autonomous systems in less constrained environments, it is increasingly important that we endow sequential decision-making algorithms with the ability to reason about uncertainty and risk. In this thesis, we will address both planning and reinforcement learning (RL) approaches to sequential decision-making. In the planning setting, it is assumed that a model of the environment is provided, and a policy is optimised within that model. Reinforcement learning relies upon extensive random exploration, and therefore usually requires a simulator in which to perform training. In many real-world domains, it is impossible to construct a perfectly accurate model or simulator. Therefore, the performance of any policy is inevitably uncertain due to the incomplete knowledge about the environment. Furthermore, in stochastic domains, the outcome of any given run is also uncertain due to the inherent randomness of the environment. These two sources of uncertainty are usually classified as epistemic, and aleatoric uncertainty, respectively. The over-arching goal of this thesis is to contribute to developing algorithms that mitigate both sources of uncertainty in sequential decision-making problems. We make a number of contributions towards this goal, with a focus on model-based algorithms...
Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations, or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments. The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the robots' dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm's performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving prior work, which result in collisions and deadlocks in such environments.
Modern robotics often involves multiple embodied agents operating within a shared environment. Path planning in these cases is considerably more challenging than in single-agent scenarios. Although standard Sampling-based Algorithms (SBAs) can be used to search for solutions in the robots' joint space, this approach quickly becomes computationally intractable as the number of agents increases. To address this issue, we integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods. During the search for a solution we can decouple (i.e., factorize) different subsets of agents into independent lower-dimensional search spaces once we certify that their future solutions will be independent of each other using a factorization heuristic. Consequently, we progressively construct a lean hypergraph where certain (hyper-)edges split the agents to independent subgraphs. In the best case, this approach can reduce the growth in dimensionality of the search space from exponential to linear in the number of agents. On average, fewer samples are needed to find high-quality solutions while preserving the optimality, completeness, and anytime properties of SBAs. We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
To adopt the soft hand exoskeleton to support activities of daily livings, it is necessary to control finger joints precisely with the exoskeleton. The problem of controlling joints to follow a given trajectory is called the tracking control problem. In this study, we focus on the tracking control problem of a human finger attached with thin McKibben muscles. To achieve precise control with thin McKibben muscles, there are two problems: one is the complex characteristics of the muscles, for example, non-linearity, hysteresis, uncertainties in the real world, and the other is the difficulty in accessing a precise model of the muscles and human fingers. To solve these problems, we adopted DreamerV2, which is a model-based reinforcement learning method, but the target trajectory cannot be generated by the learned model. Therefore, we propose Tracker, which is an extension of DreamerV2 for the tracking control problem. In the experiment, we showed that Tracker can achieve an approximately 81% smaller error than PID for the control of a two-link manipulator that imitates a part of human index finger from the metacarpal bone to the proximal bone. Tracker achieved the control of the third joint of the human index finger with a small error by being trained for approximately 60 minutes. In addition, it took approximately 15 minutes, which is less than the time required for the first training, to achieve almost the same accuracy by fine-tuning the policy pre-trained by the user's finger after taking off and attaching thin McKibben muscles again as the accuracy before taking off.
Real-time and efficient path planning is critical for all robotic systems. In particular, it is of greater importance for industrial robots since the overall planning and execution time directly impact the cycle time and automation economics in production lines. While the problem may not be complex in static environments, classical approaches are inefficient in high-dimensional environments in terms of planning time and optimality. Collision checking poses another challenge in obtaining a real-time solution for path planning in complex environments. To address these issues, we propose an end-to-end learning-based framework viz., Path Planning and Collision checking Network (PPCNet). The PPCNet generates the path by computing waypoints sequentially using two networks: the first network generates a waypoint, and the second one determines whether the waypoint is on a collision-free segment of the path. The end-to-end training process is based on imitation learning that uses data aggregation from the experience of an expert planner to train the two networks, simultaneously. We utilize two approaches for training a network that efficiently approximates the exact geometrical collision checking function. Finally, the PPCNet is evaluated in two different simulation environments and a practical implementation on a robotic arm for a bin-picking application. Compared to the state-of-the-art path planning methods, our results show significant improvement in performance by greatly reducing the planning time with comparable success rates and path lengths.