亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An emerging trend on social media platforms is their use as safe spaces for peer support. Particularly in healthcare, where many medical conditions contain harsh stigmas, social media has become a stigma-free way to engage in dialogues regarding symptoms, treatments, and personal experiences. Many existing works have employed NLP algorithms to facilitate quantitative analysis of health trends. Notably absent from existing works are keyphrase extraction (KE) models for social health posts-a task crucial to discovering emerging public health trends. This paper presents a novel, theme-driven KE dataset, SuboxoPhrase, and a qualitative annotation scheme with an overarching goal of extracting targeted clinically-relevant keyphrases. To the best of our knowledge, this is the first study to design a KE schema for social media healthcare texts. To demonstrate the value of this approach, this study analyzes Reddit posts regarding medications for opioid use disorder, a paramount health concern worldwide. Additionally, we benchmark ten off-the-shelf KE models on our new dataset, demonstrating the unique extraction challenges in modeling user-generated health texts. The proposed theme-driven KE approach lays the foundation of future work on efficient, large-scale analysis of social health texts, allowing researchers to surface useful public health trends, patterns, and knowledge gaps.

相關內容

Recently, social media platforms are heavily moderated to prevent the spread of online hate speech, which is usually fertile in toxic words and is directed toward an individual or a community. Owing to such heavy moderation, newer and more subtle techniques are being deployed. One of the most striking among these is fear speech. Fear speech, as the name suggests, attempts to incite fear about a target community. Although subtle, it might be highly effective, often pushing communities toward a physical conflict. Therefore, understanding their prevalence in social media is of paramount importance. This article presents a large-scale study to understand the prevalence of 400K fear speech and over 700K hate speech posts collected from Gab.com. Remarkably, users posting a large number of fear speech accrue more followers and occupy more central positions in social networks than users posting a large number of hate speech. They can also reach out to benign users more effectively than hate speech users through replies, reposts, and mentions. This connects to the fact that, unlike hate speech, fear speech has almost zero toxic content, making it look plausible. Moreover, while fear speech topics mostly portray a community as a perpetrator using a (fake) chain of argumentation, hate speech topics hurl direct multitarget insults, thus pointing to why general users could be more gullible to fear speech. Our findings transcend even to other platforms (Twitter and Facebook) and thus necessitate using sophisticated moderation policies and mass awareness to combat fear speech.

State-of-art NPUs are typically architected as a self-contained sub-system with multiple heterogeneous hardware computing modules, and a dataflow-driven programming model. There lacks well-established methodology and tools in the industry to evaluate and compare the performance of NPUs from different architectures. We present an event-based performance modeling framework, VPU-EM, targeting scalable performance evaluation of modern NPUs across diversified AI workloads. The framework adopts high-level event-based system-simulation methodology to abstract away design details for speed, while maintaining hardware pipelining, concurrency and interaction with software task scheduling. It is natively developed in Python and built to interface directly with AI frameworks such as Tensorflow, PyTorch, ONNX and OpenVINO, linking various in-house NPU graph compilers to achieve optimized full model performance. Furthermore, VPU-EM also provides the capability to model power characteristics of NPU in Power-EM mode to enable joint performance/power analysis. Using VPU-EM, we conduct performance/power analysis of models from representative neural network architecture. We demonstrate that even though this framework is developed for Intel VPU, an Intel in-house NPU IP technology, the methodology can be generalized for analysis of modern NPUs.

Body weight, as an essential physiological trait, is of considerable significance in many applications like body management, rehabilitation, and drug dosing for patient-specific treatments. Previous works on the body weight estimation task are mainly vision-based, using 2D/3D, depth, or infrared images, facing problems in illumination, occlusions, and especially privacy issues. The pressure mapping mattress is a non-invasive and privacy-preserving tool to obtain the pressure distribution image over the bed surface, which strongly correlates with the body weight of the lying person. To extract the body weight from this image, we propose a deep learning-based model, including a dual-branch network to extract the deep features and pose features respectively. A contrastive learning module is also combined with the deep-feature branch to help mine the mutual factors across different postures of every single subject. The two groups of features are then concatenated for the body weight regression task. To test the model's performance over different hardware and posture settings, we create a pressure image dataset of 10 subjects and 23 postures, using a self-made pressure-sensing bedsheet. This dataset, which is made public together with this paper, together with a public dataset, are used for the validation. The results show that our model outperforms the state-of-the-art algorithms over both 2 datasets. Our research constitutes an important step toward fully automatic weight estimation in both clinical and at-home practice. Our dataset is available for research purposes at: //github.com/USTCWzy/MassEstimation.

The present study investigates the role of source characteristics, the quality of evidence, and prior beliefs of the topic in adult readers' credibility evaluations of short health-related social media posts. The researchers designed content for the posts concerning five health topics by manipulating the source characteristics (source's expertise, gender, and ethnicity), the accuracy of the claims, and the quality of evidence (research evidence, testimony, consensus, and personal experience) of the posts. After this, accurate and inaccurate social media posts varying in the other manipulated aspects were programmatically generated. The crowdworkers (N = 844) recruited from two platforms were asked to evaluate the credibility of up to ten social media posts, resulting in 8380 evaluations. Before credibility evaluation, participants' prior beliefs on the topics of the posts were assessed. The results showed that prior belief consistency and the source's expertise affected the perceived credibility of the accurate and inaccurate social media posts the most after controlling for the topic of the post and the crowdworking platform. In contrast, the quality of evidence supporting the health claim mattered relatively little. The source's gender and ethnicity did not have any effect. The results are discussed in terms of first- and second-hand evaluation strategies.

The light and soft characteristics of Buoyancy Assisted Lightweight Legged Unit (BALLU) robots have a great potential to provide intrinsically safe interactions in environments involving humans, unlike many heavy and rigid robots. However, their unique and sensitive dynamics impose challenges to obtaining robust control policies in the real world. In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification and our novel residual physics learning method, Environment Mimic (EnvMimic). First, we model the nonlinear dynamics of the actuators by collecting hardware data and optimizing the simulation parameters. Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy to match real-world trajectories, which enables us to model residual physics with greater fidelity. We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones. We finally demonstrate that the improved simulator allows us to learn better walking and turning policies that can be successfully deployed on the hardware of BALLU.

Currently, inter-organizational process collaboration (IOPC) has been widely used in the design and development of distributed systems that support business process execution. Blockchain-based IOPC can establish trusted data sharing among participants, attracting more and more attention. The core of such study is to translate the graphical model (e.g., BPMN) into program code called smart contract that can be executed in the blockchain environment. In this context, a proper smart contract plays a vital role in the correct implementation of block-chain-based IOPC. In fact, the quality of graphical model affects the smart con-tract generation. Problematic models (e.g., deadlock) will result in incorrect contracts (causing unexpected behaviours). To avoid this undesired implementation, this paper explores to generate smart contracts by using the verified formal model as input instead of graphical model. Specifically, we introduce a prototype framework that supports the automatic generation of smart contracts, providing an end-to-end solution from modeling, verification, translation to implementation. One of the cores of this framework is to provide a CSP#-based formalization for the BPMN collaboration model from the perspective of message interaction. This formalization provides precise execution semantics and model verification for graphical models, and a verified formal model for smart contract generation. Another novelty is that it introduces a syntax tree-based translation algorithm to directly map the formal model into a smart contract. The required formalism, verification and translation techniques are transparent to users without imposing additional burdens. Finally, a set of experiments shows the effectiveness of the framework.

Clinical notes containing valuable patient information are written by different health care providers with various scientific levels and writing styles. It might be helpful for clinicians and researchers to understand what information is essential when dealing with extensive electronic medical records. Entities recognizing and mapping them to standard terminologies is crucial in reducing ambiguity in processing clinical notes. Although named entity recognition and entity linking are critical steps in clinical natural language processing, they can also result in the production of repetitive and low-value concepts. In other hand, all parts of a clinical text do not share the same importance or content in predicting the patient's condition. As a result, it is necessary to identify the section in which each content is recorded and also to identify key concepts to extract meaning from clinical texts. In this study, these challenges have been addressed by using clinical natural language processing techniques. In addition, in order to identify key concepts, a set of popular unsupervised key phrase extraction methods has been verified and evaluated. Considering that most of the clinical concepts are in the form of multi-word expressions and their accurate identification requires the user to specify n-gram range, we have proposed a shortcut method to preserve the structure of the expression based on TF-IDF. In order to evaluate the pre-processing method and select the concepts, we have designed two types of downstream tasks (multiple and binary classification) using the capabilities of transformer-based models. The obtained results show the superiority of proposed method in combination with SciBERT model, also offer an insight into the efficacy of general extracting essential phrase methods for clinical notes.

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司