亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep models for Multivariate Time Series (MTS) forecasting have recently demonstrated significant success. Channel-dependent models capture complex dependencies that channel-independent models cannot capture. However, the number of channels in real-world applications outpaces the capabilities of existing channel-dependent models, and contrary to common expectations, some models underperform the channel-independent models in handling high-dimensional data, which raises questions about the performance of channel-dependent models. To address this, our study first investigates the reasons behind the suboptimal performance of these channel-dependent models on high-dimensional MTS data. Our analysis reveals that two primary issues lie in the introduced noise from unrelated series that increases the difficulty of capturing the crucial inter-channel dependencies, and challenges in training strategies due to high-dimensional data. To address these issues, we propose STHD, the Scalable Transformer for High-Dimensional Multivariate Time Series Forecasting. STHD has three components: a) Relation Matrix Sparsity that limits the noise introduced and alleviates the memory issue; b) ReIndex applied as a training strategy to enable a more flexible batch size setting and increase the diversity of training data; and c) Transformer that handles 2-D inputs and captures channel dependencies. These components jointly enable STHD to manage the high-dimensional MTS while maintaining computational feasibility. Furthermore, experimental results show STHD's considerable improvement on three high-dimensional datasets: Crime-Chicago, Wiki-People, and Traffic. The source code and dataset are publicly available //github.com/xinzzzhou/ScalableTransformer4HighDimensionMTSF.git.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 大語言模型 · MoDELS · CASES · AI ·
2024 年 9 月 28 日

The advancements of Large Language Models (LLMs) have decentralized the responsibility for the transparency of AI usage. Specifically, LLM users are now encouraged or required to disclose the use of LLM-generated content for varied types of real-world tasks. However, an emerging phenomenon, users' secret use of LLM, raises challenges in ensuring end users adhere to the transparency requirement. Our study used mixed-methods with an exploratory survey (125 real-world secret use cases reported) and a controlled experiment among 300 users to investigate the contexts and causes behind the secret use of LLMs. We found that such secretive behavior is often triggered by certain tasks, transcending demographic and personality differences among users. Task types were found to affect users' intentions to use secretive behavior, primarily through influencing perceived external judgment regarding LLM usage. Our results yield important insights for future work on designing interventions to encourage more transparent disclosure of the use of LLMs or other AI technologies.

Monocular depth estimation is a critical task for autonomous driving and many other computer vision applications. While significant progress has been made in this field, the effects of viewpoint shifts on depth estimation models remain largely underexplored. This paper introduces a novel dataset and evaluation methodology to quantify the impact of different camera positions and orientations on monocular depth estimation performance. We propose a ground truth strategy based on homography estimation and object detection, eliminating the need for expensive lidar sensors. We collect a diverse dataset of road scenes from multiple viewpoints and use it to assess the robustness of a modern depth estimation model to geometric shifts. After assessing the validity of our strategy on a public dataset, we provide valuable insights into the limitations of current models and highlight the importance of considering viewpoint variations in real-world applications.

Existing causal inference (CI) models are limited to primarily handling low-dimensional confounders and singleton actions. We propose an autoregressive (AR) CI framework capable of handling complex confounders and sequential actions common in modern applications. We accomplish this by {\em sequencification}, transforming data from an underlying causal diagram into a sequence of tokens. This approach not only enables training with data generated from any DAG but also extends existing CI capabilities to accommodate estimating several statistical quantities using a {\em single} model. We can directly predict interventional probabilities, simplifying inference and enhancing outcome prediction accuracy. We demonstrate that an AR model adapted for CI is efficient and effective in various complex applications such as navigating mazes, playing chess endgames, and evaluating the impact of certain keywords on paper acceptance rates.

Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司