亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem. This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image. Multiple deep learning-based structures have been proposed for MRI reconstruction using CS, both in the k-space and image domains as well as using unrolled optimization methods. However, the drawback of these structures is that they are not fully utilizing the information from both domains (k-space and image). Herein, we propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain. We evaluate our method on a well-known open-source MRI dataset and a clinical MRI dataset of patients diagnosed with strokes from our institution to demonstrate the performance of our network. In addition to quantitative evaluation, we undertook a blinded comparison of image quality across networks performed by a subspecialty trained radiologist. Overall, we demonstrate that our network achieves a superior performance among others under multiple reconstruction tasks.

相關內容

Pathwise coordinate descent algorithms have been used to compute entire solution paths for lasso and other penalized regression problems quickly with great success. They improve upon cold start algorithms by solving the problems that make up the solution path sequentially for an ordered set of tuning parameter values, instead of solving each problem separately. However, extending pathwise coordinate descent algorithms to more the general bridge or power family of $\ell_q$ penalties is challenging. Faster algorithms for computing solution paths for these penalties are needed because $\ell_q$ penalized regression problems can be nonconvex and especially burdensome to solve. In this paper, we show that a reparameterization of $\ell_q$ penalized regression problems is more amenable to pathwise coordinate descent algorithms. This allows us to improve computation of the mode-thresholding function for $\ell_q$ penalized regression problems in practice and introduce two separate pathwise algorithms. We show that either pathwise algorithm is faster than the corresponding cold-start alternative, and demonstrate that different pathwise algorithms may be more likely to reach better solutions.

Dynamic Algorithm Configuration (DAC) tackles the question of how to automatically learn policies to control parameters of algorithms in a data-driven fashion. This question has received considerable attention from the evolutionary community in recent years. Having a good benchmark collection to gain structural understanding on the effectiveness and limitations of different solution methods for DAC is therefore strongly desirable. Following recent work on proposing DAC benchmarks with well-understood theoretical properties and ground truth information, in this work, we suggest as a new DAC benchmark the controlling of the key parameter $\lambda$ in the $(1+(\lambda,\lambda))$~Genetic Algorithm for solving OneMax problems. We conduct a study on how to solve the DAC problem via the use of (static) automated algorithm configuration on the benchmark, and propose techniques to significantly improve the performance of the approach. Our approach is able to consistently outperform the default parameter control policy of the benchmark derived from previous theoretical work on sufficiently large problem sizes. We also present new findings on the landscape of the parameter-control search policies and propose methods to compute stronger baselines for the benchmark via numerical approximations of the true optimal policies.

This paper presents a new type of distributed dexterous manipulator: delta arrays. Our delta array setup consists of 64 linearly-actuated delta robots with 3D-printed compliant linkages. Through the design of the individual delta robots, the modular array structure, and distributed communication and control, we study a wide range of in-plane and out-of-plane manipulations, as well as prehensile manipulations among subsets of neighboring delta robots. We also demonstrate dexterous manipulation capabilities of the delta array using reinforcement learning while leveraging the compliance to not break the end-effectors. Our evaluations show that the resulting 192 DoF compliant robot is capable of performing various coordinated distributed manipulations of a variety of objects, including translation, alignment, prehensile squeezing, lifting, and grasping.

We present a pipeline for printing interactive and always-on magnetophoretic displays using affordable Fused Deposition Modeling (FDM) 3D printers. Using our pipeline, an end-user can convert the surface of a 3D shape into a matrix of voxels. The generated model can be sent to an FDM 3D printer equipped with an additional syringe-based injector. During the printing process, an oil and iron powder-based liquid mixture is injected into each voxel cell, allowing the appearance of the once-printed object to be editable with external magnetic sources. To achieve this, we made modifications to the 3D printer hardware and the firmware. We also developed a 3D editor to prepare printable models. We demonstrate our pipeline with a variety of examples, including a printed Stanford bunny with customizable appearances, a small espresso mug that can be used as a post-it note surface, a board game figurine with a computationally updated display, and a collection of flexible wearable accessories with editable visuals.

This paper proposes a novel method for computing bijective density-equalizing quasiconformal (DEQ) flattening maps for multiply-connected open surfaces. In conventional density-equalizing maps, shape deformations are solely driven by prescribed constraints on the density distribution, defined as the population per unit area, while the bijectivity and local geometric distortions of the mappings are uncontrolled. Also, prior methods have primarily focused on simply-connected open surfaces but not surfaces with more complicated topologies. Our proposed method overcomes these issues by formulating the density diffusion process as a quasiconformal flow, which allows us to effectively control the local geometric distortion and guarantee the bijectivity of the mapping by solving an energy minimization problem involving the Beltrami coefficient of the mapping. To achieve an optimal parameterization of multiply-connected surfaces, we develop an iterative scheme that optimizes both the shape of the target planar circular domain and the density-equalizing quasiconformal map onto it. In addition, landmark constraints can be incorporated into our proposed method for consistent feature alignment. The method can also be naturally applied to simply-connected open surfaces. By changing the prescribed population, a large variety of surface flattening maps with different desired properties can be achieved. The method is tested on both synthetic and real examples, demonstrating its efficacy in various applications in computer graphics and medical imaging.

We propose a tractable semiparametric estimation method for structural dynamic discrete choice models. The distribution of additive utility shocks in the proposed framework is modeled by location-scale mixtures of extreme value distributions with varying numbers of mixture components. Our approach exploits the analytical tractability of extreme value distributions in the multinomial choice settings and the flexibility of the location-scale mixtures. We implement the Bayesian approach to inference using Hamiltonian Monte Carlo and an approximately optimal reversible jump algorithm. In our simulation experiments, we show that the standard dynamic logit model can deliver misleading results, especially about counterfactuals, when the shocks are not extreme value distributed. Our semiparametric approach delivers reliable inference in these settings. We develop theoretical results on approximations by location-scale mixtures in an appropriate distance and posterior concentration of the set identified utility parameters and the distribution of shocks in the model.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司