Logic Obfuscation is a well renowned design-for-trust solution to protect an Integrated Circuit (IC) from unauthorized use and illegal overproduction by including key-gates to lock the design. This is particularly necessary for ICs manufactured at untrusted third-party foundries getting exposed to security threats. In the past, several logic obfuscation methodologies have been proposed that are vulnerable to attacks such as the Boolean Satisfiability Attack. Many of these techniques are implemented at the gate level that may involve expensive re-synthesis cycles. In this paper, we present an interconnect obfuscation scheme at the Register-Transfer Level (RTL) using Switch Boxes (SBs) constructed of Polymorphic Transistors. A polymorphic SB can be designed using the same transistor count as its Complementary-Metal-Oxide-Semiconductor based counterpart, thereby no increased area in comparison, but serving as an advantage in having more key-bit combinations for an attacker to correctly identify and unlock each polymorphic SB. Security-aware high-level synthesis algorithms have also been presented to increase RTL interconnects to Functional Units impacting multiple outputs such that when a polymorphic SB is strategically inserted, those outputs would be corrupted upon incorrect key-bit identification. Finally, we run the SMT (Satisfiability Modulo Theories)-based RTL Logic Attack on the obfuscated design to examine its robustness.
The increasing demand for customized Large Language Models (LLMs) has led to the development of solutions like GPTs. These solutions facilitate tailored LLM creation via natural language prompts without coding. However, the trustworthiness of third-party custom versions of LLMs remains an essential concern. In this paper, we propose the first instruction backdoor attacks against applications integrated with untrusted customized LLMs (e.g., GPTs). Specifically, these attacks embed the backdoor into the custom version of LLMs by designing prompts with backdoor instructions, outputting the attacker's desired result when inputs contain the pre-defined triggers. Our attack includes 3 levels of attacks: word-level, syntax-level, and semantic-level, which adopt different types of triggers with progressive stealthiness. We stress that our attacks do not require fine-tuning or any modification to the backend LLMs, adhering strictly to GPTs development guidelines. We conduct extensive experiments on 6 prominent LLMs and 5 benchmark text classification datasets. The results show that our instruction backdoor attacks achieve the desired attack performance without compromising utility. Additionally, we propose two defense strategies and demonstrate their effectiveness in reducing such attacks. Our findings highlight the vulnerability and the potential risks of LLM customization such as GPTs.
This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to detoxify LLMs with a limited impact on general performance efficiently. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxifying approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs. Code and benchmark are available at //github.com/zjunlp/EasyEdit.
Despite the impressive advancements of Large Language Models (LLMs) in generating text, they are often limited by the knowledge contained in the input and prone to producing inaccurate or hallucinated content. To tackle these issues, Retrieval-augmented Generation (RAG) is employed as an effective strategy to enhance the available knowledge base and anchor the responses in reality by pulling additional texts from external databases. In real-world applications, texts are often linked through entities within a graph, such as citations in academic papers or comments in social networks. This paper exploits these topological relationships to guide the retrieval process in RAG. Specifically, we explore two kinds of topological connections: proximity-based, focusing on closely connected nodes, and role-based, which looks at nodes sharing similar subgraph structures. Our empirical research confirms their relevance to text relationships, leading us to develop a Topology-aware Retrieval-augmented Generation framework. This framework includes a retrieval module that selects texts based on their topological relationships and an aggregation module that integrates these texts into prompts to stimulate LLMs for text generation. We have curated established text-attributed networks and conducted comprehensive experiments to validate the effectiveness of this framework, demonstrating its potential to enhance RAG with topological awareness.
Precision devices play an important role in enhancing production quality and productivity in agricultural systems. Therefore, the optimization of these devices is essential in precision agriculture. Recently, with the advancements of deep learning, there have been several studies aiming to harness its capabilities for improving spray system performance. However, the effectiveness of these methods heavily depends on the size of the training dataset, which is expensive and time-consuming to collect. To address the challenge of insufficient training samples, we developed an image generator named DropletGAN to generate images of droplets. The DropletGAN model is trained by using a small dataset captured by a high-speed camera and capable of generating images with progressively increasing resolution. The results demonstrate that the model can generate high-quality images with the size of 1024x1024. The generated images from the DropletGAN are evaluated using the Fr\'echet inception distance (FID) with an FID score of 11.29. Furthermore, this research leverages recent advancements in computer vision and deep learning to develop a light droplet detector using the synthetic dataset. As a result, the detection model achieves a 16.06% increase in mean average precision (mAP) when utilizing the synthetic dataset. To the best of our knowledge, this work stands as the first to employ a generative model for augmenting droplet detection. Its significance lies not only in optimizing nozzle design for constructing efficient spray systems but also in addressing the common challenge of insufficient data in various precision agriculture tasks. This work offers a critical contribution to conserving resources while striving for optimal and sustainable agricultural practices.
Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training.
Challenges faced by formerly incarcerated individuals in the United States raise questions about our society's ability to truly provide second chances. This paper presents the outcomes of our ongoing collaboration with a non-profit organization dedicated to reentry support. We highlight the multifaceted challenges individuals face during their reentry journey, including support programs that prioritize supervision over service, unresponsive support systems, limited access to resources, financial struggles exacerbated by restricted employment opportunities, and technological barriers. In the face of such complex social challenges, our work aims to facilitate our partner organization's ongoing efforts to promote digital literacy through a web application that is integrated into their existing processes. We share initial feedback from the stakeholders, draw out four implications: supporting continuity of care, promoting reflection through slow technology, building in flexibility, and reconfiguring toward existing infrastructure, and conclude with a reflection on our role as partners on the side.
Multimodal Knowledge Graph Construction (MMKC) refers to the process of creating a structured representation of entities and relationships through multiple modalities such as text, images, videos, etc. However, existing MMKC models have limitations in handling the introduction of new entities and relations due to the dynamic nature of the real world. Moreover, most state-of-the-art studies in MMKC only consider entity and relation extraction from text data while neglecting other multi-modal sources. Meanwhile, the current continual setting for knowledge graph construction only consider entity and relation extraction from text data while neglecting other multi-modal sources. Therefore, there arises the need to explore the challenge of continuous multimodal knowledge graph construction to address the phenomenon of catastrophic forgetting and ensure the retention of past knowledge extracted from different forms of data. This research focuses on investigating this complex topic by developing lifelong multimodal benchmark datasets. Based on the empirical findings that several state-of-the-art MMKC models, when trained on multimedia data, might unexpectedly underperform compared to those solely utilizing textual resources in a continual setting, we propose a Lifelong MultiModal Consistent Transformer Framework (LMC) for continuous multimodal knowledge graph construction. By combining the advantages of consistent KGC strategies within the context of continual learning, we achieve greater balance between stability and plasticity. Our experiments demonstrate the superior performance of our method over prevailing continual learning techniques or multimodal approaches in dynamic scenarios. Code and datasets can be found at //github.com/zjunlp/ContinueMKGC.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.