Representation learning has been evolving from traditional supervised training to Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised pre-training excel at capturing longer-range global patterns and enabling better feature discrimination, while MIM can introduce more local and diverse attention across all transformer layers. In this paper, we explore how to obtain a model that combines their strengths. We start by examining previous feature distillation and mask feature reconstruction methods and identify their limitations. We find that their increasing diversity mainly derives from the asymmetric designs, but these designs may in turn compromise the discrimination ability. In order to better obtain both discrimination and diversity, we propose a simple but effective Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the MIM teacher to jointly guide the student model. Hybrid Distill imitates the token relations of the MIM teacher to alleviate attention collapse, as well as distills the feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a progressive redundant token masking strategy is also utilized to reduce the distilling costs and avoid falling into local optima. Experiment results prove that Hybrid Distill can achieve superior performance on different benchmarks.
Decision Trees (DTs) are commonly used for many machine learning tasks due to their high degree of interpretability. However, learning a DT from data is a difficult optimization problem, as it is non-convex and non-differentiable. Therefore, common approaches learn DTs using a greedy growth algorithm that minimizes the impurity locally at each internal node. Unfortunately, this greedy procedure can lead to inaccurate trees. In this paper, we present a novel approach for learning hard, axis-aligned DTs with gradient descent. The proposed method uses backpropagation with a straight-through operator on a dense DT representation, to jointly optimize all tree parameters. Our approach outperforms existing methods on binary classification benchmarks and achieves competitive results for multi-class tasks.
Automatic speech recognition (ASR) based on transducers is widely used. In training, a transducer maximizes the summed posteriors of all paths. The path with the highest posterior is commonly defined as the predicted alignment between the speech and the transcription. While the vanilla transducer does not have a prior preference for any of the valid paths, this work intends to enforce the preferred paths and achieve controllable alignment prediction. Specifically, this work proposes Bayes Risk Transducer (BRT), which uses a Bayes risk function to set lower risk values to the preferred paths so that the predicted alignment is more likely to satisfy specific desired properties. We further demonstrate that these predicted alignments with intentionally designed properties can provide practical advantages over the vanilla transducer. Experimentally, the proposed BRT saves inference cost by up to 46% for non-streaming ASR and reduces overall system latency by 41% for streaming ASR.
Large Language Models(LLMs) have been attracting attention due to a ability called in-context learning(ICL). ICL, without updating the parameters of a LLM, it is possible to achieve highly accurate inference based on rules ``in the context'' by merely inputting a training data into the prompt. Although ICL is a developing field with many unanswered questions, LLMs themselves serves as a inference model, seemingly realizing inference without explicitly indicate ``inductive bias''. On the other hand, a code generation is also a highlighted application of LLMs. The accuracy of code generation has dramatically improved, enabling even non-engineers to generate code to perform the desired tasks by crafting appropriate prompts. In this paper, we propose a novel ``learning'' method called an ``Inductive-Bias Learning (IBL)'', which combines the techniques of ICL and code generation. An idea of IBL is straightforward. Like ICL, IBL inputs a training data into the prompt and outputs a code with a necessary structure for inference (we referred to as ``Code Model'') from a ``contextual understanding''. Despite being a seemingly simple approach, IBL encompasses both a ``property of inference without explicit inductive bias'' inherent in ICL and a ``readability and explainability'' of the code generation. Surprisingly, generated Code Models have been found to achieve predictive accuracy comparable to, and in some cases surpassing, ICL and representative machine learning models. Our IBL code is open source: //github.com/fuyu-quant/IBLM
The Spiking Neural Network (SNN) has attracted more and more attention recently. It adopts binary spike signals to transmit information. Benefitting from the information passing paradigm of SNNs, the multiplications of activations and weights can be replaced by additions, which are more energy-efficient. However, its "Hard Reset" mechanism for the firing activity would ignore the difference among membrane potentials when the membrane potential is above the firing threshold, causing information loss. Meanwhile, quantifying the membrane potential to 0/1 spikes at the firing instants will inevitably introduce the quantization error thus bringing about information loss too. To address these problems, we propose to use the "Soft Reset" mechanism for the supervised training-based SNNs, which will drive the membrane potential to a dynamic reset potential according to its magnitude, and Membrane Potential Rectifier (MPR) to reduce the quantization error via redistributing the membrane potential to a range close to the spikes. Results show that the SNNs with the "Soft Reset" mechanism and MPR outperform their vanilla counterparts on both static and dynamic datasets.
ModSecurity is widely recognized as the standard open-source Web Application Firewall (WAF), maintained by the OWASP Foundation. It detects malicious requests by matching them against the Core Rule Set, identifying well-known attack patterns. Each rule in the CRS is manually assigned a weight, based on the severity of the corresponding attack, and a request is detected as malicious if the sum of the weights of the firing rules exceeds a given threshold. In this work, we show that this simple strategy is largely ineffective for detecting SQL injection (SQLi) attacks, as it tends to block many legitimate requests, while also being vulnerable to adversarial SQLi attacks, i.e., attacks intentionally manipulated to evade detection. To overcome these issues, we design a robust machine learning model, named AdvModSec, which uses the CRS rules as input features, and it is trained to detect adversarial SQLi attacks. Our experiments show that AdvModSec, being trained on the traffic directed towards the protected web services, achieves a better trade-off between detection and false positive rates, improving the detection rate of the vanilla version of ModSecurity with CRS by 21%. Moreover, our approach is able to improve its adversarial robustness against adversarial SQLi attacks by 42%, thereby taking a step forward towards building more robust and trustworthy WAFs.
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.