亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a model-based offline reinforcement learning method that integrates count-based conservatism, named $\texttt{Count-MORL}$. Our method utilizes the count estimates of state-action pairs to quantify model estimation error, marking the first algorithm of demonstrating the efficacy of count-based conservatism in model-based offline deep RL to the best of our knowledge. For our proposed method, we first show that the estimation error is inversely proportional to the frequency of state-action pairs. Secondly, we demonstrate that the learned policy under the count-based conservative model offers near-optimality performance guarantees. Through extensive numerical experiments, we validate that $\texttt{Count-MORL}$ with hash code implementation significantly outperforms existing offline RL algorithms on the D4RL benchmark datasets. The code is accessible at $\href{//github.com/oh-lab/Count-MORL}{//github.com/oh-lab/Count-MORL}$.

相關內容

In this paper, we study the shape reconstruction problem, when the shape we wish to reconstruct is an orientable smooth d-dimensional submanifold of the Euclidean space. Assuming we have as input a simplicial complex K that approximates the submanifold (such as the Cech complex or the Rips complex), we recast the problem of reconstucting the submanifold from K as a L1-norm minimization problem in which the optimization variable is a d-chain of K. Providing that K satisfies certain reasonable conditions, we prove that the considered minimization problem has a unique solution which triangulates the submanifold and coincides with the flat Delaunay complex introduced and studied in a companion paper. Since the objective is a weighted L1-norm and the contraints are linear, the triangulation process can thus be implemented by linear programming.

Data imputation is an effective way to handle missing data, which is common in practical applications. In this study, we propose and test a novel data imputation process that achieve two important goals: (1) preserve the row-wise similarities among observations and column-wise contextual relationships among features in the feature matrix, and (2) tailor the imputation process to specific downstream label prediction task. The proposed imputation process uses Transformer network and graph structure learning to iteratively refine the contextual relationships among features and similarities among observations. Moreover, it uses a meta-learning framework to select features that are influential to the downstream prediction task of interest. We conduct experiments on real-world large data sets, and show that the proposed imputation process consistently improves imputation and label prediction performance over a variety of benchmark methods.

In this paper, we present a transformer architecture for predicting student performance on standardized tests. Specifically, we leverage students historical data, including their past test scores, study habits, and other relevant information, to create a personalized model for each student. We then use these models to predict their future performance on a given test. Applying this model to the RIIID dataset, we demonstrate that using multiple granularities for temporal features as the decoder input significantly improve model performance. Our results also show the effectiveness of our approach, with substantial improvements over the LightGBM method. Our work contributes to the growing field of AI in education, providing a scalable and accurate tool for predicting student outcomes.

The paper presents the main characteristics and a preliminary implementation of a novel computational framework named CompLog. Inspired by probabilistic programming systems like ProbLog, CompLog builds upon the inferential mechanisms proposed by Simplicity Theory, relying on the computation of two Kolmogorov complexities (here implemented as min-path searches via ASP programs) rather than probabilistic inference. The proposed system enables users to compute ex-post and ex-ante measures of unexpectedness of a certain situation, mapping respectively to posterior and prior subjective probabilities. The computation is based on the specification of world and mental models by means of causal and descriptive relations between predicates weighted by complexity. The paper illustrates a few examples of application: generating relevant descriptions, and providing alternative approaches to disjunction and to negation.

In this project, we want to explore the newly emerging field of prompt engineering and apply it to the downstream task of detecting LM biases. More concretely, we explore how to design prompts that can indicate 4 different types of biases: (1) gender, (2) race, (3) sexual orientation, and (4) religion-based. Within our project, we experiment with different manually crafted prompts that can draw out the subtle biases that may be present in the language model. We apply these prompts to multiple variations of popular and well-recognized models: BERT, RoBERTa, and T5 to evaluate their biases. We provide a comparative analysis of these models and assess them using a two-fold method: use human judgment to decide whether model predictions are biased and utilize model-level judgment (through further prompts) to understand if a model can self-diagnose the biases of its own prediction.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司