亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forest fires may cause considerable damages both in ecosystems and lives. This proposal describes the application of Internet of Things and wireless sensor networks jointly with multi-hop routing through a real time and dynamic monitoring system for forest fire prevention. It is based on gathering and analyzing information related to meteorological conditions, concentrations of polluting gases and oxygen level around particular interesting forest areas. Unusual measurements of these environmental variables may help to prevent wildfire incidents and make their detection more efficient. A forest fire risk controller based on fuzzy logic has been implemented in order to activate environmental risk alerts through a Web service and a mobile application. For this purpose, security mechanisms have been proposed for ensuring integrity and confidentiality in the transmission of measured environmental information. Lamport's signature and a block cipher algorithm are used to achieve this objective.

相關內容

Bitcoin is the most common cryptocurrency involved in cyber scams. Cybercriminals often utilize pseudonymity and privacy protection mechanism associated with Bitcoin transactions to make their scams virtually untraceable. The Ponzi scheme has attracted particularly significant attention among Bitcoin fraudulent activities. This paper considers a multi-class classification problem to determine whether a transaction is involved in Ponzi schemes or other cyber scams, or is a non-scam transaction. We design a specifically designed crawler to collect data and propose a novel Attention-based Long Short-Term Memory (A-LSTM) method for the classification problem. The experimental results show that the proposed model has better efficiency and accuracy than existing approaches, including Random Forest, Extra Trees, Gradient Boosting, and classical LSTM. With correctly identified scam features, our proposed A-LSTM achieves an F1-score over 82% for the original data and outperforms the existing approaches.

Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.

Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.

This chapter discusses the intricacies of cybersecurity agents' perception. It addresses the complexity of perception and illuminates how perception shapes and influences the decision-making process. It then explores the necessary considerations when crafting the world representation and discusses the power and bandwidth constraints of perception and the underlying issues of AICA's trust in perception. On these foundations, it provides the reader with a guide to developing perception models for AICA, discussing the trade-offs of each objective state approximation. The guide is written in the context of the CYST cybersecurity simulation engine, which aims to closely model cybersecurity interactions and can be used as a basis for developing AICA. Because CYST is freely available, the reader is welcome to try implementing and evaluating the proposed methods for themselves.

We build a general framework which establishes a one-to-one correspondence between species abundance distribution (SAD) and species accumulation curve (SAC). The appearance rates of the species and the appearance times of individuals of each species are modeled as Poisson processes. The number of species can be finite or infinite. Hill numbers are extended to the framework. We introduce a linear derivative ratio family of models, $\mathrm{LDR}_1$, of which the ratio of the first and the second derivatives of the expected SAC is a linear function. A D1/D2 plot is proposed to detect this linear pattern in the data. By extrapolation of the curve in the D1/D2 plot, a species richness estimator that extends Chao1 estimator is introduced. The SAD of $\mathrm{LDR}_1$ is the Engen's extended negative binomial distribution, and the SAC encompasses several popular parametric forms including the power law. Family $\mathrm{LDR}_1$ is extended in two ways: $\mathrm{LDR}_2$ which allows species with zero detection probability, and $\mathrm{RDR}_1$ where the derivative ratio is a rational function. Real data are analyzed to demonstrate the proposed methods. We also consider the scenario where we record only a few leading appearance times of each species. We show how maximum likelihood inference can be performed when only the empirical SAC is observed, and elucidate its advantages over the traditional curve-fitting method.

5G networks intend to cover user demands through multi-party collaborations in a secure and trustworthy manner. To this end, marketplaces play a pivotal role as enablers for network service consumers and infrastructure providers to offer, negotiate, and purchase 5G resources and services. Nevertheless, marketplaces often do not ensure trustworthy networking by analyzing the security and trust of their members and offers. This paper presents a security and trust framework to enable the selection of reliable third-party providers based on their history and reputation. In addition, it also introduces a reward and punishment mechanism to continuously update trust scores according to security events. Finally, we showcase a real use case in which the security and trust framework is being applied.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司