亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Starting from the local structures to study hierarchical trees is a common research method. However, the cumbersome analysis and description make the naive method challenging to adapt to the increasingly complex hierarchical tree problems. To improve the efficiency of hierarchical tree research, we propose an embeddable matrix representation for hierarchical trees, called Generation Matrix. It can transform the abstract hierarchical tree into a concrete matrix representation and then take the hierarchical tree as a whole to study, which dramatically reduces the complexity of research. Mathematical analysis shows that Generation Matrix can simulate various recursive algorithms without accessing local structures and provides a variety of interpretable matrix operations to support the research of hierarchical trees. Applying Generation Matrix to differential privacy hierarchical tree release, we propose a Generation Matrix-based optimally consistent release algorithm (GMC). It provides an exceptionally concise process description so that we can describe its core steps as a simple matrix expression rather than multiple complicated recursive processes like existing algorithms. Our experiments show that GMC takes only a few seconds to complete a release for large-scale datasets with more than 10 million nodes. The calculation efficiency is increased by up to 100 times compared with the state-of-the-art schemes.

相關內容

Neural memory enables fast adaptation to new tasks with just a few training samples. Existing memory models store features only from the single last layer, which does not generalize well in presence of a domain shift between training and test distributions. Rather than relying on a flat memory, we propose a hierarchical alternative that stores features at different semantic levels. We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory. The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand. We meta-learn the model by a newly derived hierarchical variational inference framework, where hierarchical memory and prototypes are jointly optimized. To explore and exploit the importance of different semantic levels, we further propose to learn the weights associated with the prototype at each level in a data-driven way, which enables the model to adaptively choose the most generalizable features. We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model. The new state-of-the-art performance on cross-domain and competitive performance on traditional few-shot classification further substantiates the benefit of hierarchical variational memory.

Anomaly detection among a large number of processes arises in many applications ranging from dynamic spectrum access to cybersecurity. In such problems one can often obtain noisy observations aggregated from a chosen subset of processes that conforms to a tree structure. The distribution of these observations, based on which the presence of anomalies is detected, may be only partially known. This gives rise to the need for a search strategy designed to account for both the sample complexity and the detection accuracy, as well as cope with statistical models that are known only up to some missing parameters. In this work we propose a sequential search strategy using two variations of the Generalized Local Likelihood Ratio statistic. Our proposed Hierarchical Dynamic Search (HDS) strategy is shown to be order-optimal with respect to the size of the search space and asymptotically optimal with respect to the detection accuracy. An explicit upper bound on the error probability of HDS is established for the finite sample regime. Extensive experiments are conducted, demonstrating the performance gains of HDS over existing methods.

The link prediction task on knowledge graphs without explicit negative triples in the training data motivates the usage of rank-based metrics. Here, we review existing rank-based metrics and propose desiderata for improved metrics to address lack of interpretability and comparability of existing metrics to datasets of different sizes and properties. We introduce a simple theoretical framework for rank-based metrics upon which we investigate two avenues for improvements to existing metrics via alternative aggregation functions and concepts from probability theory. We finally propose several new rank-based metrics that are more easily interpreted and compared accompanied by a demonstration of their usage in a benchmarking of knowledge graph embedding models.

The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract inter-image correspondence is crucial for the CoSOD task. In this paper, we propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM) to capture comprehensive inter-image corresponding relationship among different images from the global and local perspectives. Firstly, we treat different images as different time slices and use 3D convolution to integrate all intra features intuitively, which can more fully extract the global group semantics. Secondly, we design a pairwise correlation transformation (PCT) to explore similarity correspondence between pairwise images and combine the multiple local pairwise correspondences to generate the local inter-image relationship. Thirdly, the inter-image relationships of the GCM and LCM are integrated through a global-and-local correspondence aggregation (GLA) module to explore more comprehensive inter-image collaboration cues. Finally, the intra- and inter-features are adaptively integrated by an intra-and-inter weighting fusion (AEWF) module to learn co-saliency features and predict the co-saliency map. The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images).

Hierarchical Text Classification (HTC) is a challenging task where a document can be assigned to multiple hierarchically structured categories within a taxonomy. The majority of prior studies consider HTC as a flat multi-label classification problem, which inevitably leads to "label inconsistency" problem. In this paper, we formulate HTC as a sequence generation task and introduce a sequence-to-tree framework (Seq2Tree) for modeling the hierarchical label structure. Moreover, we design a constrained decoding strategy with dynamic vocabulary to secure the label consistency of the results. Compared with previous works, the proposed approach achieves significant and consistent improvements on three benchmark datasets.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

Representation learning enables us to automatically extract generic feature representations from a dataset to solve another machine learning task. Recently, extracted feature representations by a representation learning algorithm and a simple predictor have exhibited state-of-the-art performance on several machine learning tasks. Despite its remarkable progress, there exist various ways to evaluate representation learning algorithms depending on the application because of the flexibility of representation learning. To understand the current representation learning, we review evaluation methods of representation learning algorithms and theoretical analyses. On the basis of our evaluation survey, we also discuss the future direction of representation learning. Note that this survey is the extended version of Nozawa and Sato (2022).

A High-dimensional and sparse (HiDS) matrix is frequently encountered in a big data-related application like an e-commerce system or a social network services system. To perform highly accurate representation learning on it is of great significance owing to the great desire of extracting latent knowledge and patterns from it. Latent factor analysis (LFA), which represents an HiDS matrix by learning the low-rank embeddings based on its observed entries only, is one of the most effective and efficient approaches to this issue. However, most existing LFA-based models perform such embeddings on a HiDS matrix directly without exploiting its hidden graph structures, thereby resulting in accuracy loss. To address this issue, this paper proposes a graph-incorporated latent factor analysis (GLFA) model. It adopts two-fold ideas: 1) a graph is constructed for identifying the hidden high-order interaction (HOI) among nodes described by an HiDS matrix, and 2) a recurrent LFA structure is carefully designed with the incorporation of HOI, thereby improving the representa-tion learning ability of a resultant model. Experimental results on three real-world datasets demonstrate that GLFA outperforms six state-of-the-art models in predicting the missing data of an HiDS matrix, which evidently supports its strong representation learning ability to HiDS data.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

北京阿比特科技有限公司