亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Backdoor data detection is traditionally studied in an end-to-end supervised learning (SL) setting. However, recent years have seen the proliferating adoption of self-supervised learning (SSL) and transfer learning (TL), due to their lesser need for labeled data. Successful backdoor attacks have also been demonstrated in these new settings. However, we lack a thorough understanding of the applicability of existing detection methods across a variety of learning settings. By evaluating 56 attack settings, we show that the performance of most existing detection methods varies significantly across different attacks and poison ratios, and all fail on the state-of-the-art clean-label attack. In addition, they either become inapplicable or suffer large performance losses when applied to SSL and TL. We propose a new detection method called Active Separation via Offset (ASSET), which actively induces different model behaviors between the backdoor and clean samples to promote their separation. We also provide procedures to adaptively select the number of suspicious points to remove. In the end-to-end SL setting, ASSET is superior to existing methods in terms of consistency of defensive performance across different attacks and robustness to changes in poison ratios; in particular, it is the only method that can detect the state-of-the-art clean-label attack. Moreover, ASSET's average detection rates are higher than the best existing methods in SSL and TL, respectively, by 69.3% and 33.2%, thus providing the first practical backdoor defense for these new DL settings. We open-source the project to drive further development and encourage engagement: //github.com/ruoxi-jia-group/ASSET.

相關內容

ACM SIGACCESS Conference on Computers and Accessibility是為殘疾人和老年人提供與計算機相關的設計、評估、使用和教育研究的首要論壇。我們歡迎提交原始的高質量的有關計算和可訪問性的主題。今年,ASSETS首次將其范圍擴大到包括關于計算機無障礙教育相關主題的原創高質量研究。官網鏈接: · 集成 · SimPLe · Learning · 類別 ·
2023 年 9 月 26 日

We describe a proof-of-concept for annotating real estate images using simple iterative rule-based semi-supervised learning. In this study, we have gained important insights into the content characteristics and uniqueness of individual image classes as well as essential requirements for a practical implementation.

We introduce Onion Universe Algorithm (OUA), a novel classification method in ensemble learning. In particular, we show its applicability as a label model for weakly supervised learning. OUA offers simplicity in implementation with minimal assumptions on the data or weak signals. The model is well suited for scenarios where fully labeled data is not available. Our method is built upon geometrical interpretation of the space spanned by weak signals. Our analysis of the high dimensional convex hull structure underlying general set of weak signals bridges geometry with machine learning. Empirical results also demonstrate that OUA works well in practice and compares favorably to best existing label models for weakly supervised learning.

3D coverage path planning for UAVs is a crucial problem in diverse practical applications. However, existing methods have shown unsatisfactory system simplicity, computation efficiency, and path quality in large and complex scenes. To address these challenges, we propose FC-Planner, a skeleton-guided planning framework that can achieve fast aerial coverage of complex 3D scenes without pre-processing. We decompose the scene into several simple subspaces by a skeleton-based space decomposition (SSD). Additionally, the skeleton guides us to effortlessly determine free space. We utilize the skeleton to efficiently generate a minimal set of specialized and informative viewpoints for complete coverage. Based on SSD, a hierarchical planner effectively divides the large planning problem into independent sub-problems, enabling parallel planning for each subspace. The carefully designed global and local planning strategies are then incorporated to guarantee both high quality and efficiency in path generation. We conduct extensive benchmark and real-world tests, where FC-Planner computes over 10 times faster compared to state-of-the-art methods with shorter path and more complete coverage. The source code will be open at //github.com/HKUST-Aerial-Robotics/FC-Planner.

Recent years have witnessed significant advancements in self-supervised learning (SSL) methods for speech-processing tasks. Various speech-based SSL models have been developed and present promising performance on a range of downstream tasks including speech recognition. However, existing speech-based SSL models face a common dilemma in terms of computational cost, which might hinder their potential application and in-depth academic research. To address this issue, we first analyze the computational cost of different modules during HuBERT pre-training and then introduce a stack of efficiency optimizations, which is named Fast-HuBERT in this paper. The proposed Fast-HuBERT can be trained in 1.1 days with 8 V100 GPUs on the Librispeech 960h benchmark, without performance degradation, resulting in a 5.2x speedup, compared to the original implementation. Moreover, we explore two well-studied techniques in the Fast-HuBERT and demonstrate consistent improvements as reported in previous work.

Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length. Recently, multiple studies have committed to extending the context length and enhancing the long text modeling capabilities of LLMs. To comprehensively evaluate the long context ability of LLMs, we propose BAMBOO, a multi-task long context benchmark. BAMBOO has been designed with four principles: comprehensive capacity evaluation, avoidance of data contamination, accurate automatic evaluation, and different length levels. It consists of 10 datasets from 5 different long text understanding tasks, i.e. question answering, hallucination detection, text sorting, language modeling, and code completion, to cover core capacities and various domains of LLMs. We conduct experiments with five long context models on BAMBOO and further discuss four key research questions of long text. We also qualitatively analyze current long context models and point out future directions for enhancing long text modeling capacities. We release our data, prompts, and code at //github.com/RUCAIBox/BAMBOO.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This paper aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we firstly illuminate EDL from machine learning and EC and regard EDL as an optimization problem. According to the DL pipeline, we systematically introduce EDL methods ranging from feature engineering, model generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications, open issues and potentially promising lines of future research are suggested. This survey has reviewed recent developments of EDL and offers insightful guidelines for the development of EDL.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司