亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present CD-NGP, which is a fast and scalable representation for 3D reconstruction and novel view synthesis in dynamic scenes. Inspired by continual learning, our method first segments input videos into multiple chunks, followed by training the model chunk by chunk, and finally, fuses features of the first branch and subsequent branches. Experiments on the prevailing DyNeRF dataset demonstrate that our proposed novel representation reaches a great balance between memory consumption, model size, training speed, and rendering quality. Specifically, our method consumes $85\%$ less training memory ($<14$GB) than offline methods and requires significantly lower streaming bandwidth ($<0.4$MB/frame) than other online alternatives.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The dramatic surge in the utilisation of generative artificial intelligence (GenAI) underscores the need for a secure and efficient mechanism to responsibly manage, use and disseminate multi-dimensional data generated by artificial intelligence (AI). In this paper, we propose a blockchain-based copyright traceability framework called ring oscillator-singular value decomposition (RO-SVD), which introduces decomposition computing to approximate low-rank matrices generated from hardware entropy sources and establishes an AI-generated content (AIGC) copyright traceability mechanism at the device level. By leveraging the parallelism and reconfigurability of field-programmable gate arrays (FPGAs), our framework can be easily constructed on existing AI-accelerated devices and provide a low-cost solution to emerging copyright issues of AIGC. We developed a hardware-software (HW/SW) co-design prototype based on comprehensive analysis and on-board experiments with multiple AI-applicable FPGAs. Using AI-generated images as a case study, our framework demonstrated effectiveness and emphasised customisation, unpredictability, efficiency, management and reconfigurability. To the best of our knowledge, this is the first practical hardware study discussing and implementing copyright traceability specifically for AI-generated content.

Multimodal large language models (MLLMs) demonstrate strong performance across visual tasks, but their efficiency is hindered by significant computational and memory demands from processing long contexts in multimodal inputs. To address this, we introduce PAR (Prompt-Aware Token Reduction), a novel and plug-and-play approach that reduces visual tokens efficiently without compromising model performance. Unlike previous methods that rely heavily on attention mechanisms and overlooking cross-modal interactions , we uses a prompt-aware strategy to adpative identify and cluster essential visual tokens. PAR categorizes visual context redundancy into two types: external and internal. External redundancy is minimized through semantic retrieval, while internal redundancy is addressed using a token routing mechanism. This method substantially reduces computational load without requiring additional training or complex architectural modifications. \textbf{Experimental results demonstrate that across various visual question answering tasks, PAR reduces FLOPs by 83\% with a compression ratio of 89\%, while retaining 97\% of baseline accuracy.} The adaptive design of PAR achieves a 2x token reduction ratio compared to prior approaches, enabling a better balance between performance and efficiency.

Rencently, Gaussian splatting has demonstrated significant success in novel view synthesis. Current methods often regress Gaussians with pixel or point cloud correspondence, linking each Gaussian with a pixel or a 3D point. This leads to the redundancy of Gaussians being used to overfit the correspondence rather than the objects represented by the 3D Gaussians themselves, consequently wasting resources and lacking accurate geometries or textures. In this paper, we introduce LeanGaussian, a novel approach that treats each query in deformable Transformer as one 3D Gaussian ellipsoid, breaking the pixel or point cloud correspondence constraints. We leverage deformable decoder to iteratively refine the Gaussians layer-by-layer with the image features as keys and values. Notably, the center of each 3D Gaussian is defined as 3D reference points, which are then projected onto the image for deformable attention in 2D space. On both the ShapeNet SRN dataset (category level) and the Google Scanned Objects dataset (open-category level, trained with the Objaverse dataset), our approach, outperforms prior methods by approximately 6.1\%, achieving a PSNR of 25.44 and 22.36, respectively. Additionally, our method achieves a 3D reconstruction speed of 7.2 FPS and rendering speed 500 FPS. The code will be released at //github.com/jwubz123/DIG3D.

Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task. Project page: \url{//zhenchenwan.github.io/TED-VITON/}

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models.

In this work, we present SpaRC, a novel Sparse fusion transformer for 3D perception that integrates multi-view image semantics with Radar and Camera point features. The fusion of radar and camera modalities has emerged as an efficient perception paradigm for autonomous driving systems. While conventional approaches utilize dense Bird's Eye View (BEV)-based architectures for depth estimation, contemporary query-based transformers excel in camera-only detection through object-centric methodology. However, these query-based approaches exhibit limitations in false positive detections and localization precision due to implicit depth modeling. We address these challenges through three key contributions: (1) sparse frustum fusion (SFF) for cross-modal feature alignment, (2) range-adaptive radar aggregation (RAR) for precise object localization, and (3) local self-attention (LSA) for focused query aggregation. In contrast to existing methods requiring computationally intensive BEV-grid rendering, SpaRC operates directly on encoded point features, yielding substantial improvements in efficiency and accuracy. Empirical evaluations on the nuScenes and TruckScenes benchmarks demonstrate that SpaRC significantly outperforms existing dense BEV-based and sparse query-based detectors. Our method achieves state-of-the-art performance metrics of 67.1 NDS and 63.1 AMOTA. The code and pretrained models are available at //github.com/phi-wol/sparc.

Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at //aaltoml.github.io/desplat/.

Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance.

Parallel input performance issues are often neglected in large scale parallel applications in Computational Science and Engineering. Traditionally, there has been less focus on input performance because either input sizes are small (as in biomolecular simulations) or the time doing input is insignificant compared with the simulation with many timesteps. But newer applications, such as graph algorithms add a premium to file input performance. Additionally, over-decomposed systems, such as Charm++/AMPI, present new challenges in this context in comparison to MPI applications. In the over-decomposition model, naive parallel I/O in which every task makes its own I/O request is impractical. Furthermore, load balancing supported by models such as Charm++/AMPI precludes assumption of data contiguity on individual nodes. We develop a new I/O abstraction to address these issues by separating the decomposition of consumers of input data from that of file-reader tasks that interact with the file system. This enables applications to scale the number of consumers of data without impacting I/O behavior or performance. These ideas are implemented in a new input library, CkIO, that is built on Charm++, which is a well-known task-based and overdecomposed-partitions system. CkIO is configurable via multiple parameters (such as the number of file readers and/or their placement) that can be tuned depending on characteristics of the application, such as file size and number of application objects. Additionally, CkIO input allows for capabilities such as effective overlap of input and application-level computation, as well as load balancing and migration. We describe the relevant challenges in understanding file system behavior and architecture, the design alternatives being explored, and preliminary performance data.

We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.

北京阿比特科技有限公司