We prove that quantum-hard one-way functions imply simulation-secure quantum oblivious transfer (QOT), which is known to suffice for secure computation of arbitrary quantum functionalities. Furthermore, our construction only makes black-box use of the quantum-hard one-way function. Our primary technical contribution is a construction of extractable and equivocal quantum bit commitments based on the black-box use of quantum-hard one-way functions in the standard model. Instantiating the Cr\'epeau-Kilian (FOCS 1988) framework with these commitments yields simulation-secure QOT.
We consider a cell-free massive multiple-input multiple-output (CF-mMIMO) surveillance system, in which multiple multi-antenna monitoring nodes (MNs) are deployed in either observing or jamming mode to disrupt the communication between a multi-antenna untrusted pair. We propose a simple and effective channel state information (CSI) acquisition scheme at the MNs. Specifically, our approach leverages pilot signals in both the uplink and downlink phases of the untrusted link, coupled with minimum mean-squared error (MMSE) estimation. This enables the MNs to accurately estimate the effective channels to both the untrusted transmitter (UT) and untrusted receiver (UR), thereby yielding robust monitoring performance. We analyze the spectral efficiency (SE) performance of the untrusted links and of the monitoring system, taking into account the proposed CSI acquisition and successive MMSE cancellation schemes. The monitoring success probability (MSP) is then derived. Simulation results show that the CF-mMIMO surveillance system, relying on the proposed CSI acquisition scheme, can achieve monitoring performance close to that achieved by having perfect CSI knowledge of the untrusted link (theoretical upper bound), especially when the number of MNs is large.
Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal solutions and frequently switch between different local minima, leading to inefficient and unsafe robot motion. In this work, We propose a novel topology-driven trajectory optimization strategy for dynamic environments that plans multiple distinct evasive trajectories to enhance the robot's behavior and efficiency. A global planner iteratively generates trajectories in distinct homotopy classes. These trajectories are then optimized by local planners working in parallel. While each planner shares the same navigation objectives, they are locally constrained to a specific homotopy class, meaning each local planner attempts a different evasive maneuver. The robot then executes the feasible trajectory with the lowest cost in a receding horizon manner. We demonstrate, on a mobile robot navigating among pedestrians, that our approach leads to faster and safer trajectories than existing planners.
Physical models in the form of partial differential equations represent an important prior for many under-constrained problems. One example is tumor treatment planning, which heavily depends on accurate estimates of the spatial distribution of tumor cells in a patient's anatomy. Medical imaging scans can identify the bulk of the tumor, but they cannot reveal its full spatial distribution. Tumor cells at low concentrations remain undetectable, for example, in the most frequent type of primary brain tumors, glioblastoma. Deep-learning-based approaches fail to estimate the complete tumor cell distribution due to a lack of reliable training data. Most existing works therefore rely on physics-based simulations to match observed tumors, providing anatomically and physiologically plausible estimations. However, these approaches struggle with complex and unknown initial conditions and are limited by overly rigid physical models. In this work, we present a novel method that balances data-driven and physics-based cost functions. In particular, we propose a unique discretization scheme that quantifies the adherence of our learned spatiotemporal tumor and brain tissue distributions to their corresponding growth and elasticity equations. This quantification, serving as a regularization term rather than a hard constraint, enables greater flexibility and proficiency in assimilating patient data than existing models. We demonstrate improved coverage of tumor recurrence areas compared to existing techniques on real-world data from a cohort of patients. The method holds the potential to enhance clinical adoption of model-driven treatment planning for glioblastoma.
We study the complexity of testing properties of quantum channels. First, we show that testing identity to any channel $\mathcal N: \mathbb C^{d_{\mathrm{in}} \times d_{\mathrm{in}}} \to \mathbb C^{d_{\mathrm{out}} \times d_{\mathrm{out}}}$ in diamond norm distance requires $\Omega(\sqrt{d_{\mathrm{in}}} / \varepsilon)$ queries, even in the strongest algorithmic model that admits ancillae, coherence, and adaptivity. This is due to the worst-case nature of the distance induced by the diamond norm. Motivated by this limitation and other theoretical and practical applications, we introduce an average-case analogue of the diamond norm, which we call the average-case imitation diamond (ACID) norm. In the weakest algorithmic model without ancillae, coherence, or adaptivity, we prove that testing identity to certain types of channels in ACID distance can be done with complexity independent of the dimensions of the channel, while for other types of channels the complexity depends on both the input and output dimensions. Building on previous work, we also show that identity to any fixed channel can be tested with $\tilde O(d_{\mathrm{in}} d_{\mathrm{out}}^{3/2} / \varepsilon^2)$ queries in ACID distance and $\tilde O(d_{\mathrm{in}}^2 d_{\mathrm{out}}^{3/2} / \varepsilon^2)$ queries in diamond distance in this model. Finally, we prove tight bounds on the complexity of channel tomography in ACID distance.
Partial differential equations (PDEs) are widely used to model complex physical systems, but solving them efficiently remains a significant challenge. Recently, Transformers have emerged as the preferred architecture for PDEs due to their ability to capture intricate dependencies. However, they struggle with representing continuous dynamics and long-range interactions. To overcome these limitations, we introduce the Mamba Neural Operator (MNO), a novel framework that enhances neural operator-based techniques for solving PDEs. MNO establishes a formal theoretical connection between structured state-space models (SSMs) and neural operators, offering a unified structure that can adapt to diverse architectures, including Transformer-based models. By leveraging the structured design of SSMs, MNO captures long-range dependencies and continuous dynamics more effectively than traditional Transformers. Through extensive analysis, we show that MNO significantly boosts the expressive power and accuracy of neural operators, making it not just a complement but a superior framework for PDE-related tasks, bridging the gap between efficient representation and accurate solution approximation.
We propose a theory for matrix completion that goes beyond the low-rank structure commonly considered in the literature and applies to general matrices of low description complexity. Specifically, complexity of the sets of matrices encompassed by the theory is measured in terms of Hausdorff and upper Minkowski dimensions. Our goal is the characterization of the number of linear measurements, with an emphasis on rank-$1$ measurements, needed for the existence of an algorithm that yields reconstruction, either perfect, with probability 1, or with arbitrarily small probability of error, depending on the setup. Concretely, we show that matrices taken from a set $\mathcal{U}$ such that $\mathcal{U}-\mathcal{U}$ has Hausdorff dimension $s$ can be recovered from $k>s$ measurements, and random matrices supported on a set $\mathcal{U}$ of Hausdorff dimension $s$ can be recovered with probability 1 from $k>s$ measurements. What is more, we establish the existence of recovery mappings that are robust against additive perturbations or noise in the measurements. Concretely, we show that there are $\beta$-H\"older continuous mappings recovering matrices taken from a set of upper Minkowski dimension $s$ from $k>2s/(1-\beta)$ measurements and, with arbitrarily small probability of error, random matrices supported on a set of upper Minkowski dimension $s$ from $k>s/(1-\beta)$ measurements. The numerous concrete examples we consider include low-rank matrices, sparse matrices, QR decompositions with sparse R-components, and matrices of fractal nature.
Causal models seek to unravel the cause-effect relationships among variables from observed data, as opposed to mere mappings among them, as traditional regression models do. This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships. In such scenarios, the causal links represented by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The proposed approach leverages the structural matrix's ability to reconstruct data and the statistical properties it imposes on the data to identify the correct structural matrix. This method does not rely on independence tests or graph fitting procedures, making it suitable for scenarios with limited training data. Simulation results demonstrate that the proposed method outperforms the well-known PC, GES, BIC exact search, and LINGAM-based methods in recovering linearly sparse causal structures.
We estimate nonparametrically the spatially varying diffusivity of a stochastic heat equation from observations perturbed by additional noise. To that end, we employ a two-step localization procedure, more precisely, we combine local state estimates into a locally linear regression approach. Our analysis relies on quantitative Trotter--Kato type approximation results for the heat semigroup that are of independent interest. The presence of observational noise leads to non-standard scaling behaviour of the model. Numerical simulations illustrate the results.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.