With rapid advances in containerization techniques, the serverless computing model is becoming a valid candidate execution model in edge networking, similar to the widely used cloud model for applications that are stateless, single purpose and event-driven, and in particular for delay-sensitive applications. One of the cloud serverless processes, i.e., the auto-scaling mechanism, cannot be however directly applied at the edge, due to the distributed nature of edge nodes, the difficulty of optimal resource allocation, and the delay sensitivity of workloads. We propose a solution to the auto-scaling problem by applying reinforcement learning (RL) approach to solving problem of efficient scaling and resource allocation of serverless functions in edge networks. We compare RL and Deep RL algorithms with empirical, monitoring-based heuristics, considering delay-sensitive applications. The simulation results shows that RL algorithm outperforms the standard, monitoring-based algorithms in terms of total delay of function requests, while achieving an improvement in delay performance by up to 50%.
We present ContainerGym, a benchmark for reinforcement learning inspired by a real-world industrial resource allocation task. The proposed benchmark encodes a range of challenges commonly encountered in real-world sequential decision making problems, such as uncertainty. It can be configured to instantiate problems of varying degrees of difficulty, e.g., in terms of variable dimensionality. Our benchmark differs from other reinforcement learning benchmarks, including the ones aiming to encode real-world difficulties, in that it is directly derived from a real-world industrial problem, which underwent minimal simplification and streamlining. It is sufficiently versatile to evaluate reinforcement learning algorithms on any real-world problem that fits our resource allocation framework. We provide results of standard baseline methods. Going beyond the usual training reward curves, our results and the statistical tools used to interpret them allow to highlight interesting limitations of well-known deep reinforcement learning algorithms, namely PPO, TRPO and DQN.
Mixed-precision quantization, where a deep neural network's layers are quantized to different precisions, offers the opportunity to optimize the trade-offs between model size, latency, and statistical accuracy beyond what can be achieved with homogeneous-bit-width quantization. To navigate the intractable search space of mixed-precision configurations for a given network, this paper proposes a hybrid search methodology. It consists of a hardware-agnostic differentiable search algorithm followed by a hardware-aware heuristic optimization to find mixed-precision configurations latency-optimized for a specific hardware target. We evaluate our algorithm on MobileNetV1 and MobileNetV2 and deploy the resulting networks on a family of multi-core RISC-V microcontroller platforms with different hardware characteristics. We achieve up to 28.6% reduction of end-to-end latency compared to an 8-bit model at a negligible accuracy drop from a full-precision baseline on the 1000-class ImageNet dataset. We demonstrate speedups relative to an 8-bit baseline, even on systems with no hardware support for sub-byte arithmetic at negligible accuracy drop. Furthermore, we show the superiority of our approach with respect to differentiable search targeting reduced binary operation counts as a proxy for latency.
Reinforcement learning is a learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks. Along with the promising prospects of reinforcement learning in numerous domains such as robotics and game-playing, transfer learning has arisen to tackle various challenges faced by reinforcement learning, by transferring knowledge from external expertise to facilitate the efficiency and effectiveness of the learning process. In this survey, we systematically investigate the recent progress of transfer learning approaches in the context of deep reinforcement learning. Specifically, we provide a framework for categorizing the state-of-the-art transfer learning approaches, under which we analyze their goals, methodologies, compatible reinforcement learning backbones, and practical applications. We also draw connections between transfer learning and other relevant topics from the reinforcement learning perspective and explore their potential challenges that await future research progress.
Branch-and-bound is a typical way to solve combinatorial optimization problems. This paper proposes a graph pointer network model for learning the variable selection policy in the branch-and-bound. We extract the graph features, global features and historical features to represent the solver state. The proposed model, which combines the graph neural network and the pointer mechanism, can effectively map from the solver state to the branching variable decisions. The model is trained to imitate the classic strong branching expert rule by a designed top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. Our approach also outperforms the state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances.
Artificial intelligence (AI) and Machine Learning (ML) are considered as key enablers for realizing the full potential of fifth-generation (5G) and beyond mobile networks, particularly in the context of resource management and orchestration. In this demonstration, we consider a fully-fledged 5G mobile network and develop a multi-agent deep reinforcement learning (DRL) framework for RAN resource allocation. By leveraging local monitoring information generated by a shared gNodeB instance (gNB), each DRL agent aims to optimally allocate radio resources concerning service-specific traffic demands belonging to heterogeneous running services. We perform experiments on the deployed testbed in real-time, showing that DRL-based agents can allocate radio resources fairly while improving the overall efficiency of resource utilization and minimizing the risk of over provisioning.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.