亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized clinical trials with time-to-event outcomes have traditionally used the log-rank test followed by the Cox proportional hazards (PH) model to estimate the hazard ratio between the treatment groups. These are valid under the assumption that the right-censoring mechanism is non-informative, i.e. independent of the time-to-event of interest within each treatment group. More generally, the censoring time might depend on additional covariates, and inverse probability of censoring weighting (IPCW) can be used to correct for the bias resulting from the informative censoring. IPCW requires a correctly specified censoring time model conditional on the treatment and the covariates. Doubly robust inference in this setting has not been plausible previously due to the non-collapsibility of the Cox model. However, with the recent development of data-adaptive machine learning methods we derive an augmented IPCW (AIPCW) estimator that has the following doubly robust (DR) properties: it is model doubly robust, in that it is consistent and asymptotic normal (CAN), as long as one of the two models, one for the failure time and one for the censoring time, is correctly specified; it is also rate doubly robust, in that it is CAN as long as the product of the estimation error rates under these two models is faster than root-$n$. We investigate the AIPCW estimator using extensive simulation in finite samples.

相關內容

Bayesian optimization (BO) is a widely popular approach for the hyperparameter optimization (HPO) in machine learning. At its core, BO iteratively evaluates promising configurations until a user-defined budget, such as wall-clock time or number of iterations, is exhausted. While the final performance after tuning heavily depends on the provided budget, it is hard to pre-specify an optimal value in advance. In this work, we propose an effective and intuitive termination criterion for BO that automatically stops the procedure if it is sufficiently close to the global optimum. Our key insight is that the discrepancy between the true objective (predictive performance on test data) and the computable target (validation performance) suggests stopping once the suboptimality in optimizing the target is dominated by the statistical estimation error. Across an extensive range of real-world HPO problems and baselines, we show that our termination criterion achieves a better trade-off between the test performance and optimization time. Additionally, we find that overfitting may occur in the context of HPO, which is arguably an overlooked problem in the literature, and show how our termination criterion helps to mitigate this phenomenon on both small and large datasets.

It is now well known that neural networks can be wrong with high confidence in their predictions, leading to poor calibration. The most common post-hoc approach to compensate for this is to perform temperature scaling, which adjusts the confidences of the predictions on any input by scaling the logits by a fixed value. Whilst this approach typically improves the average calibration across the whole test dataset, this improvement typically reduces the individual confidences of the predictions irrespective of whether the classification of a given input is correct or incorrect. With this insight, we base our method on the observation that different samples contribute to the calibration error by varying amounts, with some needing to increase their confidence and others needing to decrease it. Therefore, for each input, we propose to predict a different temperature value, allowing us to adjust the mismatch between confidence and accuracy at a finer granularity. Furthermore, we observe improved results on OOD detection and can also extract a notion of hardness for the data-points. Our method is applied post-hoc, consequently using very little computation time and with a negligible memory footprint and is applied to off-the-shelf pre-trained classifiers. We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets, showing that producing per-data-point temperatures is beneficial also for the expected calibration error across the whole test set. Code is available at: //github.com/thwjoy/adats.

We consider the problem of constructing bounds on the average treatment effect (ATE) when unmeasured confounders exist but have bounded influence. Specifically, we assume that omitted confounders could not change the odds of treatment for any unit by more than a fixed factor. We derive the sharp partial identification bounds implied by this assumption by leveraging distributionally robust optimization, and we propose estimators of these bounds with several novel robustness properties. The first is double sharpness: our estimators consistently estimate the sharp ATE bounds when one of two nuisance parameters is misspecified and achieve semiparametric efficiency when all nuisance parameters are suitably consistent. The second is double validity: even when most nuisance parameters are misspecified, our estimators still provide valid but possibly conservative bounds for the ATE and our Wald confidence intervals remain valid even when our estimators are not asymptotically normal. As a result, our estimators provide a highly credible method for sensitivity analysis of causal inferences.

We study the problem of learning nonparametric distributions in a finite mixture, and establish tight bounds on the sample complexity for learning the component distributions in such models. Namely, we are given i.i.d. samples from a pdf $f$ where $$ f=\sum_{i=1}^k w_i f_i, \quad\sum_{i=1}^k w_i=1, \quad w_i>0 $$ and we are interested in learning each component $f_i$. Without any assumptions on $f_i$, this problem is ill-posed. In order to identify the components $f_i$, we assume that each $f_i$ can be written as a convolution of a Gaussian and a compactly supported density $\nu_i$ with $\text{supp}(\nu_i)\cap \text{supp}(\nu_j)=\emptyset$. Our main result shows that $(\frac{1}{\varepsilon})^{\Omega(\log\log \frac{1}{\varepsilon})}$ samples are required for estimating each $f_i$. Unlike parametric mixtures, the difficulty does not arise from the order $k$ or small weights $w_i$, and unlike nonparametric density estimation it does not arise from the curse of dimensionality, irregularity, or inhomogeneity. The proof relies on a fast rate for approximation with Gaussians, which may be of independent interest. To show this is tight, we also propose an algorithm that uses $(\frac{1}{\varepsilon})^{O(\log\log \frac{1}{\varepsilon})}$ samples to estimate each $f_i$. Unlike existing approaches to learning latent variable models based on moment-matching and tensor methods, our proof instead involves a delicate analysis of an ill-conditioned linear system via orthogonal functions. Combining these bounds, we conclude that the optimal sample complexity of this problem properly lies in between polynomial and exponential, which is not common in learning theory.

This paper proposes a 3-input arbiter-based novel physically unclonable function (PUF) design. Firstly, a 3-input priority arbiter is designed using a simple arbiter, two multiplexers (2:1), and an XOR logic gate. The priority arbiter has an equal probability of 0's and 1's at the output, which results in excellent uniformity (49.45%) while retrieving the PUF response. Secondly, a new PUF design based on priority arbiter PUF (PA-PUF) is presented. The PA-PUF design is evaluated for uniqueness, non-linearity, and uniformity against the standard tests. The proposed PA-PUF design is configurable in challenge-response pairs through an arbitrary number of feed-forward priority arbiters introduced to the design. We demonstrate, through extensive experiments, reliability of 100% after performing the error correction techniques and uniqueness of 49.63%. Finally, the design is compared with the literature to evaluate its implementation efficiency, where it is clearly found to be superior compared to the state-of-the-art.

The literature on treatment choice focuses on the mean of welfare regret. Ignoring other features of the regret distribution, however, can lead to an undesirable rule that suffers from a high chance of welfare loss due to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of welfare regret. This paradigm shift alters optimal rules drastically. We show that for a wide class of nonlinear criteria, admissible rules are fractional. Focusing on mean square regret, we derive the closed-form probabilities of randomization for finite-sample Bayes and minimax optimal rules when data are normal with known variance. The minimax optimal rule is a simple logit based on the sample mean and agrees with the posterior probability for positive treatment effect under the least favorable prior. The Bayes optimal rule with an uninformative prior is different but produces quantitatively comparable mean square regret. We extend these results to limit experiments and discuss our findings through sample size calculations.

The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.

The design of data-driven formulations for machine learning and decision-making with good out-of-sample performance is a key challenge. The observation that good in-sample performance does not guarantee good out-of-sample performance is generally known as overfitting. Practical overfitting can typically not be attributed to a single cause but instead is caused by several factors all at once. We consider here three overfitting sources: (i) statistical error as a result of working with finite sample data, (ii) data noise which occurs when the data points are measured only with finite precision, and finally (iii) data misspecification in which a small fraction of all data may be wholly corrupted. We argue that although existing data-driven formulations may be robust against one of these three sources in isolation they do not provide holistic protection against all overfitting sources simultaneously. We design a novel data-driven formulation which does guarantee such holistic protection and is furthermore computationally viable. Our distributionally robust optimization formulation can be interpreted as a novel combination of a Kullback-Leibler and Levy-Prokhorov robust optimization formulation. Finally, we show how in the context of classification and regression problems several popular regularized and robust formulations reduce to a particular case of our proposed more general formulation.

We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We develop a frequentist inferential procedure that utilizes posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司