亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, conditional copulas, that allow dependence between variables to vary according to the values of one or more covariates, have attracted increasing attention. In high dimension, vine copulas offer greater flexibility compared to multivariate copulas, since they are constructed using bivariate copulas as building blocks. In this paper we present a novel inferential approach for multivariate distributions, which combines the flexibility of vine constructions with the advantages of Bayesian nonparametrics, not requiring the specification of parametric families for each pair copula. Expressing multivariate copulas using vines allows us to easily account for covariate specifications driving the dependence between response variables. More precisely, we specify the vine copula density as an infinite mixture of Gaussian copulas, defining a Dirichlet process (DP) prior on the mixing measure, and we perform posterior inference via Markov chain Monte Carlo (MCMC) sampling. Our approach is successful as for clustering as well as for density estimation. We carry out intensive simulation studies and apply the proposed approach to investigate the impact of natural disasters on financial development. Our results show that the methodology is able to capture the heterogeneity in the dataset and to reveal different behaviours of different country clusters in relation to natural disasters.

相關內容

官方網站:

In many practices, scientists are particularly interested in detecting which of the predictors are truly associated with a multivariate response. It is more accurate to model multiple responses as one vector rather than separating each component one by one. This is particularly true for complex traits having multiple correlated components. A Bayesian multivariate variable selection (BMVS) approach is proposed to select important predictors influencing the multivariate response from a candidate pool with an ultrahigh dimension. By applying the sample-size-dependent spike and slab priors, the BMVS approach satisfies the strong selection consistency property under certain conditions, which represents the advantages of BMVS over other existing Bayesian multivariate regression-based approaches. The proposed approach considers the covariance structure of multiple responses without assuming independence and integrates the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. It is demonstrated through simulations that the BMVS approach outperforms some other relevant frequentist and Bayesian approaches. The proposed BMVS approach possesses the flexibility of wide applications, including genome-wide association studies with multiple correlated phenotypes and a large scale of genetic variants and/or environmental variables, as demonstrated in the real data analyses section. The computer code and test data of the proposed method are available as an R package.

Modelling multiple network data is crucial for addressing a wide range of applied research questions. However, there are many challenges, both theoretical and computational, to address. Network cycles are often of particular interest in many applications, such as ecological studies, and an unexplored area has been how to incorporate networks' cycles within the inferential framework in an explicit way. The recently developed Spherical Network Family of models (SNF) offers a flexible formulation for modelling multiple network data that permits any type of metric. This has opened up the possibility to formulate network models that focus on network properties hitherto not possible or practical to consider. In this article we propose a novel network distance metric that measures similarities between networks with respect to their cycles, and incorporate this within the SNF model to allow inferences that explicitly capture information on cycles. These network motifs are of particular interest in ecological studies. We further propose a novel computational framework to allow posterior inferences from the intractable SNF model for moderate sized networks. Lastly, we apply the resulting methodology to a set of ecological network data studying aggressive interactions between species of fish. We show our model is able to make cogent inferences concerning the cycle behaviour amongst the species, and beyond those possible from a model that does not consider this network motif.

In this paper we introduce a novel Bayesian approach for linking multiple social networks in order to discover the same real world person having different accounts across networks. In particular, we develop a latent model that allow us to jointly characterize the network and linkage structures relying in both relational and profile data. In contrast to other existing approaches in the machine learning literature, our Bayesian implementation naturally provides uncertainty quantification via posterior probabilities for the linkage structure itself or any function of it. Our findings clearly suggest that our methodology can produce accurate point estimates of the linkage structure even in the absence of profile information, and also, in an identity resolution setting, our results confirm that including relational data into the matching process improves the linkage accuracy. We illustrate our methodology using real data from popular social networks such as Twitter, Facebook, and YouTube.

Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high-dimensional random variables (RVs). A high-dimensional RV can be described by its probability density (pdf) and/or by the corresponding probability characteristic functions (pcf), or by a polynomial chaos (PCE) or similar expansion. Here the interest is mainly to compute characterisations like the entropy, or relations between two distributions, like their Kullback-Leibler divergence. These are all computed from the pdf, which is often not available directly, and it is a computational challenge to even represent it in a numerically feasible fashion in case the dimension $d$ is even moderately large. In this regard, we propose to represent the density by a high order tensor product, and approximate this in a low-rank format. We show how to go from the pcf or functional representation to the pdf. This allows us to reduce the computational complexity and storage cost from an exponential to a linear. The characterisations such as entropy or the $f$-divergences need the possibility to compute point-wise functions of the pdf. This normally rather trivial task becomes more difficult when the pdf is approximated in a low-rank tensor format, as the point values are not directly accessible any more. The data is considered as an element of a high order tensor space. The considered algorithms are independent of the representation of the data as a tensor. All that we require is that the data can be considered as an element of an associative, commutative algebra with an inner product. Such an algebra is isomorphic to a commutative sub-algebra of the usual matrix algebra, allowing the use of matrix algorithms to accomplish the mentioned tasks.

We build a sharp approximation of the whole distribution of the sum of iid heavy-tailed random vectors, combining mean and extreme behaviors. It extends the so-called 'normex' approach from a univariate to a multivariate framework. We propose two possible multi-normex distributions, named $d$-Normex and MRV-Normex. Both rely on the Gaussian distribution for describing the mean behavior, via the CLT, while the difference between the two versions comes from using the exact distribution or the EV theorem for the maximum. The main theorems provide the rate of convergence for each version of the multi-normex distributions towards the distribution of the sum, assuming second order regular variation property for the norm of the parent random vector when considering the MRV-normex case. Numerical illustrations and comparisons are proposed with various dependence structures on the parent random vector, using QQ-plots based on geometrical quantiles.

We study the reknown deconvolution problem of recovering a distribution function from independent replicates (signal) additively contaminated with random errors (noise), whose distribution is known. We investigate whether a Bayesian nonparametric approach for modelling the latent distribution of the signal can yield inferences with asymptotic frequentist validity under the $L^1$-Wasserstein metric. When the error density is ordinary smooth, we develop two inversion inequalities relating either the $L^1$ or the $L^1$-Wasserstein distance between two mixture densities (of the observations) to the $L^1$-Wasserstein distance between the corresponding distributions of the signal. This smoothing inequality improves on those in the literature. We apply this general result to a Bayesian approach bayes on a Dirichlet process mixture of normal distributions as a prior on the mixing distribution (or distribution of the signal), with a Laplace or Linnik noise. In particular we construct an \textit{adaptive} approximation of the density of the observations by the convolution of a Laplace (or Linnik) with a well chosen mixture of normal densities and show that the posterior concentrates at the minimax rate up to a logarithmic factor. The same prior law is shown to also adapt to the Sobolev regularity level of the mixing density, thus leading to a new Bayesian estimation method, relative to the Wasserstein distance, for distributions with smooth densities.

We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset. Specifically, we are given a set $T$ of $n$ points in $\mathbb{R}^d$ and a parameter $0< \alpha <\frac 1 2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a well-behaved distribution $\mathcal{D}$ and the remaining $(1-\alpha)$-fraction are arbitrary. The goal is to output a small list of vectors, at least one of which is close to the mean of $\mathcal{D}$. We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees, with running time $O(n^{1 + \epsilon_0} d)$, for any fixed $\epsilon_0 > 0$. All prior algorithms for this problem had additional polynomial factors in $\frac 1 \alpha$. We leverage this result, together with additional techniques, to obtain the first almost-linear time algorithms for clustering mixtures of $k$ separated well-behaved distributions, nearly-matching the statistical guarantees of spectral methods. Prior clustering algorithms inherently relied on an application of $k$-PCA, thereby incurring runtimes of $\Omega(n d k)$. This marks the first runtime improvement for this basic statistical problem in nearly two decades. The starting point of our approach is a novel and simpler near-linear time robust mean estimation algorithm in the $\alpha \to 1$ regime, based on a one-shot matrix multiplicative weights-inspired potential decrease. We crucially leverage this new algorithmic framework in the context of the iterative multi-filtering technique of Diakonikolas et al. '18, '20, providing a method to simultaneously cluster and downsample points using one-dimensional projections -- thus, bypassing the $k$-PCA subroutines required by prior algorithms.

A confidence sequence is a sequence of confidence intervals that is uniformly valid over an unbounded time horizon. Our work develops confidence sequences whose widths go to zero, with nonasymptotic coverage guarantees under nonparametric conditions. We draw connections between the Cram\'er-Chernoff method for exponential concentration, the law of the iterated logarithm (LIL), and the sequential probability ratio test -- our confidence sequences are time-uniform extensions of the first; provide tight, nonasymptotic characterizations of the second; and generalize the third to nonparametric settings, including sub-Gaussian and Bernstein conditions, self-normalized processes, and matrix martingales. We illustrate the generality of our proof techniques by deriving an empirical-Bernstein bound growing at a LIL rate, as well as a novel upper LIL for the maximum eigenvalue of a sum of random matrices. Finally, we apply our methods to covariance matrix estimation and to estimation of sample average treatment effect under the Neyman-Rubin potential outcomes model.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司