亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In light of the growing interest in type inference research for Python, both researchers and practitioners require a standardized process to assess the performance of various type inference techniques. This paper introduces TypeEvalPy, a comprehensive micro-benchmarking framework for evaluating type inference tools. TypeEvalPy contains 154 code snippets with 845 type annotations across 18 categories that target various Python features. The framework manages the execution of containerized tools, transforms inferred types into a standardized format, and produces meaningful metrics for assessment. Through our analysis, we compare the performance of six type inference tools, highlighting their strengths and limitations. Our findings provide a foundation for further research and optimization in the domain of Python type inference.

相關內容

The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks. However, a significant gap remains in assessing whether LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the pressing need for methods to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval provides an implementation for the math problems}, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the robustness of quantifier's work.

Decades of progress in energy-efficient and low-power design have successfully reduced the operational carbon footprint in the semiconductor industry. However, this has led to an increase in embodied emissions, encompassing carbon emissions arising from design, manufacturing, packaging, and other infrastructural activities. While existing research has developed tools to analyze embodied carbon at the computer architecture level for traditional monolithic systems, these tools do not apply to near-mainstream heterogeneous integration (HI) technologies. HI systems offer significant potential for sustainable computing by minimizing carbon emissions through two key strategies: ``reducing" computation by reusing pre-designed chiplet IP blocks and adopting hierarchical approaches to system design. The reuse of chiplets across multiple designs, even spanning multiple generations of integrated circuits (ICs), can substantially reduce embodied carbon emissions throughout the operational lifespan. This paper introduces a carbon analysis tool specifically designed to assess the potential of HI systems in facilitating greener VLSI system design and manufacturing approaches. The tool takes into account scaling, chiplet and packaging yields, design complexity, and even carbon overheads associated with advanced packaging techniques employed in heterogeneous systems. Experimental results demonstrate that HI can achieve a reduction of embodied carbon emissions up to 70\% compared to traditional large monolithic systems. These findings suggest that HI can pave the way for sustainable computing practices, contributing to a more environmentally conscious semiconductor industry.

Bayesian optimisation requires fitting a Gaussian process model, which in turn requires specifying hyperparameters - most of the theoretical literature assumes those hyperparameters are known. The commonly used maximum likelihood estimator for hyperparameters of the Gaussian process is consistent only if the data fills the space uniformly, which does not have to be the case in Bayesian optimisation. Since no guarantees exist regarding the correctness of hyperparameter estimation, and those hyperparameters can significantly affect the Gaussian process fit, theoretical analysis of Bayesian optimisation with unknown hyperparameters is very challenging. Previously proposed algorithms with the no-regret property were only able to handle the special case of unknown lengthscales, reproducing kernel Hilbert space norm and applied only to the frequentist case. We propose a novel algorithm, HE-GP-UCB, which is the first algorithm enjoying the no-regret property in the case of unknown hyperparameters of arbitrary form, and which supports both Bayesian and frequentist settings. Our proof idea is novel and can easily be extended to other variants of Bayesian optimisation. We show this by extending our algorithm to the adversarially robust optimisation setting under unknown hyperparameters. Finally, we empirically evaluate our algorithm on a set of toy problems and show that it can outperform the maximum likelihood estimator.

We investigate fine-grained algorithmic aspects of identification problems in graphs and set systems, with a focus on Locating-Dominating Set and Test Cover. We prove, among other things, the following three (tight) conditional lower bounds. \begin{enumerate} \item \textsc{Locating-Dominating Set} does not admit an algorithm running in time $2^{o(k^2)} \cdot poly(n)$, nor a polynomial time kernelization algorithm that reduces the solution size and outputs a kernel with $2^{o(k)}$ vertices, unless the \ETH\ fails. \end{enumerate} To the best of our knowledge, \textsc{Locating-Dominating Set} is the first problem that admits such an algorithmic lower-bound (with a quadratic function in the exponent) when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Test Cover} does not admit an algorithm running in time $2^{2^{o(k)}} \cdot poly(|U| + |\calF|)$. \end{enumerate} After \textsc{Edge Clique Cover} and \textsc{BiClique Cover}, this is the only example that we know of that admits a double exponential lower bound when parameterized by the solution size. \begin{enumerate}[resume] \item \textsc{Locating-Dominating Set} (respectively, \textsc{Test Cover}) parameterized by the treewidth of the input graph (respectively, of the natural auxiliary graph) does not admit an algorithm running in time $2^{2^{o(\tw)}} \cdot poly(n)$ (respectively, $2^{2^{o(\tw)}} \cdot poly(|U| + |\calF|))$. \end{enumerate} This result augments the small list of NP-Complete problems that admit double exponential lower bounds when parameterized by treewidth. We also present algorithms whose running times match the above lower bounds. We also investigate the parameterizations by several other structural graph parameters, answering some open problems from the literature.

Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.

This work explores the zero-shot adaptation capability of semantic skills, semantically interpretable experts' behavior patterns, in cross-domain settings, where a user input in interleaved multi-modal snippets can prompt a new long-horizon task for different domains. In these cross-domain settings, we present a semantic skill translator framework SemTra which utilizes a set of multi-modal models to extract skills from the snippets, and leverages the reasoning capabilities of a pretrained language model to adapt these extracted skills to the target domain. The framework employs a two-level hierarchy for adaptation: task adaptation and skill adaptation. During task adaptation, seq-to-seq translation by the language model transforms the extracted skills into a semantic skill sequence, which is tailored to fit the cross-domain contexts. Skill adaptation focuses on optimizing each semantic skill for the target domain context, through parametric instantiations that are facilitated by language prompting and contrastive learning-based context inferences. This hierarchical adaptation empowers the framework to not only infer a complex task specification in one-shot from the interleaved multi-modal snippets, but also adapt it to new domains with zero-shot learning abilities. We evaluate our framework with Meta-World, Franka Kitchen, RLBench, and CARLA environments. The results clarify the framework's superiority in performing long-horizon tasks and adapting to different domains, showing its broad applicability in practical use cases, such as cognitive robots interpreting abstract instructions and autonomous vehicles operating under varied configurations.

We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse and cleaned corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications. FaBERT is openly accessible at //huggingface.co/sbunlp/fabert

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司