亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is NP-hard however. In this paper, we investigate when polynomial-time approximations of the shortest path search are sufficient to determine the optimal assignment of robots to goals. In particular, we propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging the knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.

相關內容

Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods. Web: //github.com/DLR-RM/shape-completion

Humanoid robots are expected to navigate in changing environments and perform a variety of tasks. Frequently, these tasks require the robot to make decisions online regarding the speed and precision of following a reference path. For example, a robot may want to decide to temporarily deviate from its path to overtake a slowly moving obstacle that shares the same path and is ahead. In this case, path following performance is compromised in favor of fast path traversal. Available global trajectory tracking approaches typically assume a given -- specified in advance -- time parametrization of the path and seek to minimize the norm of the Cartesian error. As a result, when the robot should be where on the path is fixed and temporary deviations from the path are strongly discouraged. Given a global path, this paper presents a Model Predictive Contouring Control (MPCC) approach to selecting footsteps that maximize path traversal while simultaneously allowing the robot to decide between faithful versus fast path following. The method is evaluated in high-fidelity simulations of the bipedal robot Digit in terms of tracking performance of curved paths under disturbances and is also applied to the case where Digit overtakes a moving obstacle.

Computing a shortest path between two nodes in an undirected unweighted graph is among the most basic algorithmic tasks. Breadth first search solves this problem in linear time, which is clearly also a lower bound in the worst case. However, several works have shown how to solve this problem in sublinear time in expectation when the input graph is drawn from one of several classes of random graphs. In this work, we extend these results by giving sublinear time shortest path (and short path) algorithms for expander graphs. We thus identify a natural deterministic property of a graph (that is satisfied by typical random regular graphs) which suffices for sublinear time shortest paths. The algorithms are very simple, involving only bidirectional breadth first search and short random walks. We also complement our new algorithms by near-matching lower bounds.

With the rapid development of cloud computing and big data technologies, storage systems have become a fundamental building block of datacenters, incorporating hardware innovations such as flash solid state drives and non-volatile memories, as well as software infrastructures such as RAID and distributed file systems. Despite the growing popularity and interests in storage, designing and implementing reliable storage systems remains challenging, due to their performance instability and prevailing hardware failures. Proactive prediction greatly strengthens the reliability of storage systems. There are two dimensions of prediction: performance and failure. Ideally, through detecting in advance the slow IO requests, and predicting device failures before they really happen, we can build storage systems with especially low tail latency and high availability. While its importance is well recognized, such proactive prediction in storage systems, on the other hand, is particularly difficult. To move towards predictability of storage systems, various mechanisms and field studies have been proposed in the past few years. In this report, we present a survey of these mechanisms and field studies, focusing on machine learning based black-box approaches. Based on three representative research works, we discuss where and how machine learning should be applied in this field. The strengths and limitations of each research work are also evaluated in detail.

We consider a dynamic situation in the weighted bipartite matching problem: edge weights in the input graph are repeatedly updated and we are asked to maintain an optimal matching at any moment. A trivial approach is to compute an optimal matching from scratch each time an update occurs. In this paper, we show that if each update occurs locally around a single vertex, then a single execution of Dijkstra's algorithm is sufficient to preserve optimality with the aid of a dual solution. As an application of our result, we provide a faster implementation of the envy-cycle procedure for finding an envy-free allocation of indivisible items. Our algorithm runs in $\mathrm{O}(mn^2)$ time, while the known bound of the original one is $\mathrm{O}(mn^3)$, where $n$ and $m$ denote the numbers of agents and items, respectively.

This paper examines the comparative effectiveness of a specialized compiled language model and a general-purpose model like OpenAI's GPT-3.5 in detecting SDGs within text data. It presents a critical review of Large Language Models (LLMs), addressing challenges related to bias and sensitivity. The necessity of specialized training for precise, unbiased analysis is underlined. A case study using a company descriptions dataset offers insight into the differences between the GPT-3.5 and the specialized SDG detection model. While GPT-3.5 boasts broader coverage, it may identify SDGs with limited relevance to the companies' activities. In contrast, the specialized model zeroes in on highly pertinent SDGs. The importance of thoughtful model selection is emphasized, taking into account task requirements, cost, complexity, and transparency. Despite the versatility of LLMs, the use of specialized models is suggested for tasks demanding precision and accuracy. The study concludes by encouraging further research to find a balance between the capabilities of LLMs and the need for domain-specific expertise and interpretability.

We investigate the fixed-budget best-arm identification (BAI) problem for linear bandits in a potentially non-stationary environment. Given a finite arm set $\mathcal{X}\subset\mathbb{R}^d$, a fixed budget $T$, and an unpredictable sequence of parameters $\left\lbrace\theta_t\right\rbrace_{t=1}^{T}$, an algorithm will aim to correctly identify the best arm $x^* := \arg\max_{x\in\mathcal{X}}x^\top\sum_{t=1}^{T}\theta_t$ with probability as high as possible. Prior work has addressed the stationary setting where $\theta_t = \theta_1$ for all $t$ and demonstrated that the error probability decreases as $\exp(-T /\rho^*)$ for a problem-dependent constant $\rho^*$. But in many real-world $A/B/n$ multivariate testing scenarios that motivate our work, the environment is non-stationary and an algorithm expecting a stationary setting can easily fail. For robust identification, it is well-known that if arms are chosen randomly and non-adaptively from a G-optimal design over $\mathcal{X}$ at each time then the error probability decreases as $\exp(-T\Delta^2_{(1)}/d)$, where $\Delta_{(1)} = \min_{x \neq x^*} (x^* - x)^\top \frac{1}{T}\sum_{t=1}^T \theta_t$. As there exist environments where $\Delta_{(1)}^2/ d \ll 1/ \rho^*$, we are motivated to propose a novel algorithm $\mathsf{P1}$-$\mathsf{RAGE}$ that aims to obtain the best of both worlds: robustness to non-stationarity and fast rates of identification in benign settings. We characterize the error probability of $\mathsf{P1}$-$\mathsf{RAGE}$ and demonstrate empirically that the algorithm indeed never performs worse than G-optimal design but compares favorably to the best algorithms in the stationary setting.

The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

北京阿比特科技有限公司