亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The lack of an available emotion pathology database is one of the key obstacles in studying the emotion expression status of patients with dysarthria. The first Chinese multimodal emotional pathological speech database containing multi-perspective information is constructed in this paper. It includes 29 controls and 39 patients with different degrees of motor dysarthria, expressing happy, sad, angry and neutral emotions. All emotional speech was labeled for intelligibility, types and discrete dimensional emotions by developed WeChat mini-program. The subjective analysis justifies from emotion discrimination accuracy, speech intelligibility, valence-arousal spatial distribution, and correlation between SCL-90 and disease severity. The automatic recognition tested on speech and glottal data, with average accuracy of 78% for controls and 60% for patients in audio, while 51% for controls and 38% for patients in glottal data, indicating an influence of the disease on emotional expression.

相關內容

We study variation in policing outcomes attributable to differential policing practices in New York City (NYC) using geographic regression discontinuity designs (GeoRDDs). By focusing on small geographic windows near police precinct boundaries we can estimate local average treatment effects of police precincts on arrest rates. We propose estimands and develop estimators for the GeoRDD when the data come from a spatial point process. Additionally, standard GeoRDDs rely on continuity assumptions of the potential outcome surface or a local randomization assumption within a window around the boundary. These assumptions, however, can easily be violated in realistic applications. We develop a novel and robust approach to testing whether there are differences in policing outcomes that are caused by differences in police precincts across NYC. Importantly, this approach is applicable to standard regression discontinuity designs with both numeric and point process data. This approach is robust to violations of traditional assumptions made, and is valid under weaker assumptions. We use a unique form of resampling to provide a valid estimate of our test statistic's null distribution even under violations of standard assumptions. This procedure gives substantially different results in the analysis of NYC arrest rates than those that rely on standard assumptions.

Automatic Speech Recognition (ASR) systems are used in the financial domain to enhance the caller experience by enabling natural language understanding and facilitating efficient and intuitive interactions. Increasing use of ASR systems requires that such systems exhibit very low error rates. The predominant ASR models to collect numeric data are large, general-purpose commercial models -- Google Speech-to-text (STT), or Amazon Transcribe -- or open source (OpenAI's Whisper). Such ASR models are trained on hundreds of thousands of hours of audio data and require considerable resources to run. Despite recent progress large speech recognition models, we highlight the potential of smaller, specialized "micro" models. Such light models can be trained perform well on number recognition specific tasks, competing with general models like Whisper or Google STT while using less than 80 minutes of training time and occupying at least an order of less memory resources. Also, unlike larger speech recognition models, micro-models are trained on carefully selected and curated datasets, which makes them highly accurate, agile, and easy to retrain, while using low compute resources. We present our work on creating micro models for multi-digit number recognition that handle diverse speaking styles reflecting real-world pronunciation patterns. Our work contributes to domain-specific ASR models, improving digit recognition accuracy, and privacy of data. An added advantage, their low resource consumption allows them to be hosted on-premise, keeping private data local instead uploading to an external cloud. Our results indicate that our micro-model makes less errors than the best-of-breed commercial or open-source ASRs in recognizing digits (1.8% error rate of our best micro-model versus 5.8% error rate of Whisper), and has a low memory footprint (0.66 GB VRAM for our model versus 11 GB VRAM for Whisper).

This study focuses on how different modalities of human communication can be used to distinguish between healthy controls and subjects with schizophrenia who exhibit strong positive symptoms. We developed a multi-modal schizophrenia classification system using audio, video, and text. Facial action units and vocal tract variables were extracted as low-level features from video and audio respectively, which were then used to compute high-level coordination features that served as the inputs to the audio and video modalities. Context-independent text embeddings extracted from transcriptions of speech were used as the input for the text modality. The multi-modal system is developed by fusing a segment-to-session-level classifier for video and audio modalities with a text model based on a Hierarchical Attention Network (HAN) with cross-modal attention. The proposed multi-modal system outperforms the previous state-of-the-art multi-modal system by 8.53% in the weighted average F1 score.

Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.

Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A post-processing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.

This work has been motivated by a longitudinal data set on HIV CD4 T+ cell counts from Livingstone district, Zambia. The corresponding histogram plots indicate lack of symmetry in the marginal distributions and the pairwise scatter plots show non-elliptical dependence patterns. The standard linear mixed model for longitudinal data fails to capture these features. Thus it seems appropriate to consider a more general framework for modeling such data. In this article, we consider generalized linear mixed models (GLMM) for the marginals (e.g. Gamma mixed model), and temporal dependency of the repeated measurements is modeled by the copula corresponding to some skew-elliptical distributions (like skew-normal/skew-t). Our proposed class of copula based mixed models simultaneously takes into account asymmetry, between-subject variability and non-standard temporal dependence, and hence can be considered extensions to the standard linear mixed model based on multivariate normality. We estimate the model parameters using the IFM (inference function of margins) method, and also describe how to obtain standard errors of the parameter estimates. We investigate the finite sample performance of our procedure with extensive simulation studies involving skewed and symmetric marginal distributions and several choices of the copula. We finally apply our models to the HIV data set and report the findings.

Coronary artery disease (CAD) remains the leading cause of death globally and invasive coronary angiography (ICA) is considered the gold standard of anatomical imaging evaluation when CAD is suspected. However, risk evaluation based on ICA has several limitations, such as visual assessment of stenosis severity, which has significant interobserver variability. This motivates to development of a lesion classification system that can support specialists in their clinical procedures. Although deep learning classification methods are well-developed in other areas of medical imaging, ICA image classification is still at an early stage. One of the most important reasons is the lack of available and high-quality open-access datasets. In this paper, we reported a new annotated ICA images dataset, CADICA, to provide the research community with a comprehensive and rigorous dataset of coronary angiography consisting of a set of acquired patient videos and associated disease-related metadata. This dataset can be used by clinicians to train their skills in angiographic assessment of CAD severity and by computer scientists to create computer-aided diagnostic systems to help in such assessment. In addition, baseline classification methods are proposed and analyzed, validating the functionality of CADICA and giving the scientific community a starting point to improve CAD detection.

Revealing hidden dynamics from the stochastic data is a challenging problem as randomness takes part in the evolution of the data. The problem becomes exceedingly complex when the trajectories of the stochastic data are absent in many scenarios. Here we present an approach to effectively modeling the dynamics of the stochastic data without trajectories based on the weak form of the Fokker-Planck (FP) equation, which governs the evolution of the density function in the Brownian process. Taking the collocations of Gaussian functions as the test functions in the weak form of the FP equation, we transfer the derivatives to the Gaussian functions and thus approximate the weak form by the expectational sum of the data. With a dictionary representation of the unknown terms, a linear system is built and then solved by the regression, revealing the unknown dynamics of the data. Hence, we name the method with the Weak Collocation Regression (WCR) method for its three key components: weak form, collocation of Gaussian kernels, and regression. The numerical experiments show that our method is flexible and fast, which reveals the dynamics within seconds in multi-dimensional problems and can be easily extended to high-dimensional data such as 20 dimensions. WCR can also correctly identify the hidden dynamics of the complex tasks with variable-dependent diffusion and coupled drift, and the performance is robust, achieving high accuracy in the case with noise added.

AI-enabled synthetic biology has tremendous potential but also significantly increases biorisks and brings about a new set of dual use concerns. The picture is complicated given the vast innovations envisioned to emerge by combining emerging technologies, as AI-enabled synthetic biology potentially scales up bioengineering into industrial biomanufacturing. However, the literature review indicates that goals such as maintaining a reasonable scope for innovation, or more ambitiously to foster a huge bioeconomy don't necessarily contrast with biosafety, but need to go hand in hand. This paper presents a literature review of the issues and describes emerging frameworks for policy and practice that transverse the options of command-and control, stewardship, bottom-up, and laissez-faire governance. How to achieve early warning systems that enable prevention and mitigation of future AI-enabled biohazards from the lab, from deliberate misuse, or from the public realm, will constantly need to evolve, and adaptive, interactive approaches should emerge. Although biorisk is subject to an established governance regime, and scientists generally adhere to biosafety protocols, even experimental, but legitimate use by scientists could lead to unexpected developments. Recent advances in chatbots enabled by generative AI have revived fears that advanced biological insight can more easily get into the hands of malignant individuals or organizations. Given these sets of issues, society needs to rethink how AI-enabled synthetic biology should be governed. The suggested way to visualize the challenge at hand is whack-a-mole governance, although the emerging solutions are perhaps not so different either.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司