亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies deep neural networks for solving extremely large linear systems arising from highdimensional problems. Because of the curse of dimensionality, it is expensive to store both the solution and right-hand side vector in such extremely large linear systems. Our idea is to employ a neural network to characterize the solution with much fewer parameters than the size of the solution under a matrix-free setting. We present an error analysis of the proposed method, indicating that the solution error is bounded by the condition number of the matrix and the neural network approximation error. Several numerical examples from partial differential equations, queueing problems, and probabilistic Boolean networks are presented to demonstrate that the solutions of linear systems can be learned quite accurately.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this paper, we propose, analyze and implement efficient time parallel methods for the Cahn-Hilliard (CH) equation. It is of great importance to develop efficient numerical methods for the CH equation, given the range of applicability of the CH equation has. The CH equation generally needs to be simulated for a very long time to get the solution of phase coarsening stage. Therefore it is desirable to accelerate the computation using parallel method in time. We present linear and nonlinear Parareal methods for the CH equation depending on the choice of fine approximation. We illustrate our results by numerical experiments.

In this paper, we present a novel pseudospectral (PS) method for solving a new class of initial-value problems (IVPs) of time-dependent one-dimensional fractional partial differential equations (FPDEs) with variable coefficients and periodic solutions. A main ingredient of our work is the use of the recently developed periodic RL/Caputo fractional derivative (FD) operators with sliding positive fixed memory length of Bourafa et al. [1] or their reduced forms obtained by Elgindy [2] as the natural FD operators to accurately model FPDEs with periodic solutions. The proposed method converts the IVP into a well-conditioned linear system of equations using the PS method based on Fourier collocations and Gegenbauer quadratures. The reduced linear system has a simple special structure and can be solved accurately and rapidly by using standard linear system solvers. A rigorous study of the error and convergence of the proposed method is presented. The idea and results presented in this paper are expected to be useful in the future to address more general problems involving FPDEs with periodic solutions.

In this paper, we study zeroth-order algorithms for nonconvex-concave minimax problems, which have attracted widely attention in machine learning, signal processing and many other fields in recent years. We propose a zeroth-order alternating randomized gradient projection (ZO-AGP) algorithm for smooth nonconvex-concave minimax problems, and its iteration complexity to obtain an $\varepsilon$-stationary point is bounded by $\mathcal{O}(\varepsilon^{-4})$, and the number of function value estimation is bounded by $\mathcal{O}(d_{x}+d_{y})$ per iteration. Moreover, we propose a zeroth-order block alternating randomized proximal gradient algorithm (ZO-BAPG) for solving block-wise nonsmooth nonconvex-concave minimax optimization problems, and the iteration complexity to obtain an $\varepsilon$-stationary point is bounded by $\mathcal{O}(\varepsilon^{-4})$ and the number of function value estimation per iteration is bounded by $\mathcal{O}(K d_{x}+d_{y})$. To the best of our knowledge, this is the first time that zeroth-order algorithms with iteration complexity gurantee are developed for solving both general smooth and block-wise nonsmooth nonconvex-concave minimax problems. Numerical results on data poisoning attack problem validate the efficiency of the proposed algorithms.

Time Series Classification (TSC) involved building predictive models for a discrete target variable from ordered, real valued, attributes. Over recent years, a new set of TSC algorithms have been developed which have made significant improvement over the previous state of the art. The main focus has been on univariate TSC, i.e. the problem where each case has a single series and a class label. In reality, it is more common to encounter multivariate TSC (MTSC) problems where multiple series are associated with a single label. Despite this, much less consideration has been given to MTSC than the univariate case. The UEA archive of 30 MTSC problems released in 2018 has made comparison of algorithms easier. We review recently proposed bespoke MTSC algorithms based on deep learning, shapelets and bag of words approaches. The simplest approach to MTSC is to ensemble univariate classifiers over the multivariate dimensions. We compare the bespoke algorithms to these dimension independent approaches on the 26 of the 30 MTSC archive problems where the data are all of equal length. We demonstrate that the independent ensemble of HIVE-COTE classifiers is the most accurate, but that, unlike with univariate classification, dynamic time warping is still competitive at MTSC.

Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as $\mathcal{O}(T^2 \times \text{polylog}(n))$, where $n$ is the size of the models and $T$ is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.

An important issue in many multivariate regression problems is to eliminate candidate predictors with null predictor vectors. In large-dimensional (LD) setting where the numbers of responses and predictors are large, model selection encounters the scalability challenge. Knock-one-out (KOO) statistics hold promise to meet this challenge. In this paper, the almost sure limits and the central limit theorem of the KOO statistics are derived under the LD setting and mild distributional assumptions (finite fourth moments) of the errors. These theoretical results guarantee the strong consistency of a subset selection rule based on the KOO statistics with a general threshold. For enhancing the robustness of the selection rule, we also propose a bootstrap threshold for the KOO approach. Simulation results support our conclusions and demonstrate the selection probabilities by the KOO approach with the bootstrap threshold outperform the methods using Akaike information threshold, Bayesian information threshold and Mallow's C$_p$ threshold. We compare the proposed KOO approach with those based on information threshold to a chemometrics dataset and a yeast cell-cycle dataset, which suggests our proposed method identifies useful models.

We consider evolutionary systems, i.e. systems of linear partial differential equations arising from the mathematical physics. For these systems there exists a general solution theory in exponentially weighted spaces which can be exploited in the analysis of numerical methods. The numerical method considered in this paper is a discontinuous Galerkin method in time combined with a conforming Galerkin method in space. Building on our recent paper, we improve some of the results, study the dependence of the numerical solution on the weight-parameter, consider a reformulation and post-processing of its numerical solution. As a by-product we provide error estimates for the dG-C0 method. Numerical simulations support the theoretical findings.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

北京阿比特科技有限公司