From pedestrians to Kuramoto oscillators, interactions between agents govern how a multitude of dynamical systems evolve in space and time. Discovering how these agents relate to each other can improve our understanding of the often complex dynamics that underlie these systems. Recent works learn to categorize relationships between agents based on observations of their physical behavior. These approaches are limited in that the relationship categories are modelled as independent and mutually exclusive, when in real world systems categories are often interacting. In this work, we introduce a level of abstraction between the physical behavior of agents and the categories that define their behavior. To do this, we learn a mapping from the agents' states to their affinities for each category in a graph neural network. We integrate the physical proximity of agents and their affinities in a nonlinear opinion dynamics model which provides a mechanism to identify mutually exclusive categories, predict an agent's evolution in time, and control an agent's behavior. We demonstrate the utility of our model for learning interpretable categories for mechanical systems, and demonstrate its efficacy on several long-horizon trajectory prediction benchmarks where we consistently out perform existing methods.
Orbital angular momentum (OAM) mode multiplexing has the potential to achieve high spectrum-efficiency communications at the same time and frequency by using orthogonal mode resource. However, the vortex wave hollow divergence characteristic results in the requirement of the large-scale receive antenna, which makes users hardly receive the OAM signal by size-limited equipment. To promote the OAM application in the next 6G communications, this paper proposes the cooperative OAM wireless (COW) communication scheme, which can select the cooperative users (CUs) to form the aligned antennas by size-limited user equipment. First, we derive the feasible radial radius and selective waist radius to choose the CUs in the same circle with the origin at the base station. Then, based on the locations of CUs, the waist radius is adjusted to form the receive antennas and ensure the maximum intensity for the CUs. Finally, the cooperative formation probability is derived in the closed-form solution, which can depict the feasibility of the proposed COW communication scheme. Furthermore, OAM beam steering is used to expand the feasible CU region, thus achieving higher cooperative formation probability. Simulation results demonstrate that the derived cooperative formation probability in mathematical analysis is very close to the statistical probability of cooperative formation, and the proposed COW communication scheme can obtain higher spectrum efficiency than the traditional scheme due to the effective reception of the OAM signal.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.
Speech bandwidth expansion is crucial for expanding the frequency range of low-bandwidth speech signals, thereby improving audio quality, clarity and perceptibility in digital applications. Its applications span telephony, compression, text-to-speech synthesis, and speech recognition. This paper presents a novel approach using a high-fidelity generative adversarial network, unlike cascaded systems, our system is trained end-to-end on paired narrowband and wideband speech signals. Our method integrates various bandwidth upsampling ratios into a single unified model specifically designed for speech bandwidth expansion applications. Our approach exhibits robust performance across various bandwidth expansion factors, including those not encountered during training, demonstrating zero-shot capability. To the best of our knowledge, this is the first work to showcase this capability. The experimental results demonstrate that our method outperforms previous end-to-end approaches, as well as interpolation and traditional techniques, showcasing its effectiveness in practical speech enhancement applications.
Graph neural networks (GNN) are vulnerable to adversarial attacks, which aim to degrade the performance of GNNs through imperceptible changes on the graph. However, we find that in fact the prevalent meta-gradient-based attacks, which utilizes the gradient of the loss w.r.t the adjacency matrix, are biased towards training nodes. That is, their meta-gradient is determined by a training procedure of the surrogate model, which is solely trained on the training nodes. This bias manifests as an uneven perturbation, connecting two nodes when at least one of them is a labeled node, i.e., training node, while it is unlikely to connect two unlabeled nodes. However, these biased attack approaches are sub-optimal as they do not consider flipping edges between two unlabeled nodes at all. This means that they miss the potential attacked edges between unlabeled nodes that significantly alter the representation of a node. In this paper, we investigate the meta-gradients to uncover the root cause of the uneven perturbations of existing attacks. Based on our analysis, we propose a Meta-gradient-based attack method using contrastive surrogate objective (Metacon), which alleviates the bias in meta-gradient using a new surrogate loss. We conduct extensive experiments to show that Metacon outperforms existing meta gradient-based attack methods through benchmark datasets, while showing that alleviating the bias towards training nodes is effective in attacking the graph structure.
We aim to accelerate the original vision of the semantic web by revisiting design decisions that have defined the semantic web up until now. We propose a shift in direction that more broadly embraces existing data infrastructure by reconsidering the semantic web's logical foundations. We argue to shift attention away from description logic, which has so far underpinned the semantic web, to a different fragment of first-order logic. We argue, using examples from the (geo)spatial domain, that by doing so, the semantic web can be approached as a traditional data migration and integration problem at a massive scale. That way, a huge amount of existing tools and theories can be deployed to the semantic web's benefit, and the original vision of ontology as shared abstraction be reinvigorated.
Temporal networks are effective in capturing the evolving interactions of networks over time, such as social networks and e-commerce networks. In recent years, researchers have primarily concentrated on developing specific model architectures for Temporal Graph Neural Networks (TGNNs) in order to improve the representation quality of temporal nodes and edges. However, limited attention has been given to the quality of negative samples during the training of TGNNs. When compared with static networks, temporal networks present two specific challenges for negative sampling: positive sparsity and positive shift. Positive sparsity refers to the presence of a single positive sample amidst numerous negative samples at each timestamp, while positive shift relates to the variations in positive samples across different timestamps. To robustly address these challenges in training TGNNs, we introduce Curriculum Negative Mining (CurNM), a model-aware curriculum learning framework that adaptively adjusts the difficulty of negative samples. Within this framework, we first establish a dynamically updated negative pool that balances random, historical, and hard negatives to address the challenges posed by positive sparsity. Secondly, we implement a temporal-aware negative selection module that focuses on learning from the disentangled factors of recently active edges, thus accurately capturing shifting preferences. Extensive experiments on 12 datasets and 3 TGNNs demonstrate that our method outperforms baseline methods by a significant margin. Additionally, thorough ablation studies and parameter sensitivity experiments verify the usefulness and robustness of our approach. Our code is available at //github.com/zziyue83/CurNM.
Real networks often have severe degree heterogeneity, with the maximum, average, and minimum node degrees differing significantly. This paper examines the impact of degree heterogeneity on statistical limits of network data analysis. Introducing the heterogeneity distribution (HD) under a degree-corrected mixed-membership network model, we show that the optimal rate of mixed membership estimation is an explicit functional of the HD. This result confirms that severe degree heterogeneity may decelerate the error rate, even when the overall sparsity remains unchanged. To obtain a rate-optimal method, we modify an existing spectral algorithm, Mixed-SCORE, by adding a pre-PCA normalization step. This step normalizes the adjacency matrix by a diagonal matrix consisting of the $b$th power of node degrees, for some $b\in \mathbb{R}$. We discover that $b = 1/2$ is universally favorable. The resulting spectral algorithm is rate-optimal for networks with arbitrary degree heterogeneity. A technical component in our proofs is entry-wise eigenvector analysis of the normalized graph Laplacian.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.