Accurately detecting voiced intervals in speech signals is a critical step in pitch tracking and has numerous applications. While conventional signal processing methods and deep learning algorithms have been proposed for this task, their need to fine-tune threshold parameters for different datasets and limited generalization restrict their utility in real-world applications. To address these challenges, this study proposes a supervised voicing detection model that leverages recorded laryngograph data. The model is based on a densely-connected convolutional recurrent neural network (DC-CRN), and trained on data with reference voicing decisions extracted from laryngograph data sets. Pretraining is also investigated to improve the generalization ability of the model. The proposed model produces robust voicing detection results, outperforming other strong baseline methods, and generalizes well to unseen datasets. The source code of the proposed model with pretraining is provided along with the list of used laryngograph datasets to facilitate further research in this area.
Deep neural networks are vulnerable to adversarial samples. Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner. However, we identify that some latent features of adversarial samples are confused by adversarial perturbation and lead to an unexpectedly increasing gap between features in the last hidden layer of natural and adversarial samples. To address this issue, we propose a disentanglement-based approach to explicitly model and further remove the latent features that cause the feature gap. Specifically, we introduce a feature disentangler to separate out the latent features from the features of the adversarial samples, thereby boosting robustness by eliminating the latent features. Besides, we align features in the pre-trained model with features of adversarial samples in the fine-tuned model, to further benefit from the features from natural samples without confusion. Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.
Additive spatial statistical models with weakly stationary process assumptions have become standard in spatial statistics. However, one disadvantage of such models is the computation time, which rapidly increases with the number of data points. The goal of this article is to apply an existing subsampling strategy to standard spatial additive models and to derive the spatial statistical properties. We call this strategy the "spatial data subset model" (SDSM) approach, which can be applied to big datasets in a computationally feasible way. Our approach has the advantage that one does not require any additional restrictive model assumptions. That is, computational gains increase as model assumptions are removed when using our model framework. This provides one solution to the computational bottlenecks that occur when applying methods such as Kriging to "big data". We provide several properties of this new spatial data subset model approach in terms of moments, sill, nugget, and range under several sampling designs. An advantage of our approach is that it subsamples without throwing away data, and can be implemented using datasets of any size that can be stored. We present the results of the spatial data subset model approach on simulated datasets, and on a large dataset consists of 150,000 observations of daytime land surface temperatures measured by the MODIS instrument onboard the Terra satellite.
Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the realworld. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic as well as a quasi-static cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at //sites.google.com/view/cloth-sim2real-benchmark.
Linear solvers are major computational bottlenecks in a wide range of decision support and optimization computations. The challenges become even more pronounced on heterogeneous hardware, where traditional sparse numerical linear algebra methods are often inefficient. For example, methods for solving ill-conditioned linear systems have relied on conditional branching, which degrades performance on hardware accelerators such as graphical processing units (GPUs). To improve the efficiency of solving ill-conditioned systems, our computational strategy separates computations that are efficient on GPUs from those that need to run on traditional central processing units (CPUs). Our strategy maximizes the reuse of expensive CPU computations. Iterative methods, which thus far have not been broadly used for ill-conditioned linear systems, play an important role in our approach. In particular, we extend ideas from [1] to implement iterative refinement using inexact LU factors and flexible generalized minimal residual (FGMRES), with the aim of efficient performance on GPUs. We focus on solutions that are effective within broader application contexts, and discuss how early performance tests could be improved to be more predictive of the performance in a realistic environment
This paper quantifies an error source that limits the accuracy of lidar scan matching, particularly for voxel-based methods. Lidar scan matching, which is used in dead reckoning (also known as lidar odometry) and mapping, computes the rotation and translation that best align a pair of point clouds. Perspective errors occur when a scene is viewed from different angles, with different surfaces becoming visible or occluded from each viewpoint. To explain perspective anomalies observed in data, this paper models perspective errors for two objects representative of urban landscapes: a cylindrical column and a dual-wall corner. For each object, we provide an analytical model of the perspective error for voxel-based lidar scan matching. We then analyze how perspective errors accumulate as a lidar-equipped vehicle moves past these objects.
GPU remoting is a promising technique for supporting AI applications. Networking plays a key role in enabling remoting. However, for efficient remoting, the network requirements in terms of latency and bandwidth are unknown. In this paper, we take a GPU-centric approach to derive the minimum latency and bandwidth requirements for GPU remoting, while ensuring no (or little) performance degradation for AI applications. Our study including theoretical model demonstrates that, with careful remoting design, unmodified AI applications can run on the remoting setup using commodity networking hardware without any overhead or even with better performance, with low network demands.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.