The continuous time stochastic process is a mainstream mathematical instrument modeling the random world with a wide range of applications involving finance, statistics, physics, and time series analysis, while the simulation and analysis of the continuous time stochastic process is a challenging problem for classical computers. In this work, a general framework is established to prepare the path of a continuous time stochastic process in a quantum computer efficiently. The storage and computation resource is exponentially reduced on the key parameter of holding time, as the qubit number and the circuit depth are both optimized via our compressed state preparation method. The desired information, including the path-dependent and history-sensitive information that is essential for financial problems, can be extracted efficiently from the compressed sampling path, and admits a further quadratic speed-up. Moreover, this extraction method is more sensitive to those discontinuous jumps capturing extreme market events. Two applications of option pricing in Merton jump diffusion model and ruin probability computing in the collective risk model are given.
By exploiting the theory of skew-symmetric distributions, we generalise existing results in sensitivity analysis by providing the analytic expression of the bias induced by marginalization over an unobserved continuous confounder in a logistic regression model. The expression is approximated and mimics Cochran's formula under some simplifying assumptions. Other link functions and error distributions are also considered. A simulation study is performed to assess its properties. The derivations can also be applied in causal mediation analysis, thereby enlarging the number of circumstances where simple parametric formulations can be used to evaluate causal direct and indirect effects. Standard errors of the causal effect estimators are provided via the first-order Delta method. Simulations show that our proposed estimators perform equally well as others based on numerical methods and that the additional interpretability of the explicit formulas does not compromise their precision. The new estimator has been applied to measure the effect of humidity on upper airways diseases mediated by the presence of common aeroallergens in the air.
We introduce a Loss Discounting Framework for model and forecast combination which generalises and combines Bayesian model synthesis and generalized Bayes methodologies. We use a loss function to score the performance of different models and introduce a multilevel discounting scheme which allows a flexible specification of the dynamics of the model weights. This novel and simple model combination approach can be easily applied to large scale model averaging/selection, can handle unusual features such as sudden regime changes, and can be tailored to different forecasting problems. We compare our method to both established methodologies and state of the art methods for a number of macroeconomic forecasting examples. We find that the proposed method offers an attractive, computationally efficient alternative to the benchmark methodologies and often outperforms more complex techniques.
Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.
The combinatorial pure exploration (CPE) in the stochastic multi-armed bandit setting (MAB) is a well-studied online decision-making problem: A player wants to find the optimal \emph{action} $\boldsymbol{\pi}^*$ from \emph{action class} $\mathcal{A}$, which is a collection of subsets of arms with certain combinatorial structures. Though CPE can represent many combinatorial structures such as paths, matching, and spanning trees, most existing works focus only on binary action class $\mathcal{A}\subseteq\{0, 1\}^d$ for some positive integer $d$. This binary formulation excludes important problems such as the optimal transport, knapsack, and production planning problems. To overcome this limitation, we extend the binary formulation to real, $\mathcal{A}\subseteq\mathbb{R}^d$, and propose a new algorithm. The only assumption we make is that the number of actions in $\mathcal{A}$ is polynomial in $d$. We show an upper bound of the sample complexity for our algorithm and the action class-dependent lower bound for R-CPE-MAB, by introducing a quantity that characterizes the problem's difficulty, which is a generalization of the notion \emph{width} introduced in Chen et al.[2014].
Given tensors $\boldsymbol{\mathscr{A}}, \boldsymbol{\mathscr{B}}, \boldsymbol{\mathscr{C}}$ of size $m \times 1 \times n$, $m \times p \times 1$, and $1\times p \times n$, respectively, their Bhattacharya-Mesner (BM) product will result in a third order tensor of dimension $m \times p \times n$ and BM-rank of 1 (Mesner and Bhattacharya, 1990). Thus, if a third-order tensor can be written as a sum of a small number of such BM-rank 1 terms, this BM-decomposition (BMD) offers an implicitly compressed representation of the tensor. Therefore, in this paper, we give a generative model which illustrates that spatio-temporal video data can be expected to have low BM-rank. Then, we discuss non-uniqueness properties of the BMD and give an improved bound on the BM-rank of a third-order tensor. We present and study properties of an iterative algorithm for computing an approximate BMD, including convergence behavior and appropriate choices for starting guesses that allow for the decomposition of our spatial-temporal data into stationary and non-stationary components. Several numerical experiments show the impressive ability of our BMD algorithm to extract important temporal information from video data while simultaneously compressing the data. In particular, we compare our approach with dynamic mode decomposition (DMD): first, we show how the matrix-based DMD can be reinterpreted in tensor BMP form, then we explain why the low BM-rank decomposition can produce results with superior compression properties while simultaneously providing better separation of stationary and non-stationary features in the data. We conclude with a comparison of our low BM-rank decomposition to two other tensor decompositions, CP and the t-SVDM.
There are well-established methods for identifying the causal effect of a time-varying treatment applied at discrete time points. However, in the real world, many treatments are continuous or have a finer time scale than the one used for measurement or analysis. While researchers have investigated the discrepancies between estimates under varying discretization scales using simulations and empirical data, it is still unclear how the choice of discretization scale affects causal inference. To address this gap, we present a framework to understand how discretization scales impact the properties of causal inferences about the effect of a time-varying treatment. We introduce the concept of "identification bias", which is the difference between the causal estimand for a continuous-time treatment and the purported estimand of a discretized version of the treatment. We show that this bias can persist even with an infinite number of longitudinal treatment-outcome trajectories. We specifically examine the identification problem in a class of linear stochastic continuous-time data-generating processes and demonstrate the identification bias of the g-formula in this context. Our findings indicate that discretization bias can significantly impact empirical analysis, especially when there are limited repeated measurements. Therefore, we recommend that researchers carefully consider the choice of discretization scale and perform sensitivity analysis to address this bias. We also propose a simple and heuristic quantitative measure for sensitivity concerning discretization and suggest that researchers report this measure along with point and interval estimates in their work. By doing so, researchers can better understand and address the potential impact of discretization bias on causal inference.
We consider the problem of computing a grevlex Gr\"obner basis for the set $F_r(M)$ of minors of size $r$ of an $n\times n$ matrix $M$ of generic linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal $\langle F_r(M) \rangle$ cannot be generated by a regular sequence. As such, when using the general-purpose algorithm $F_5$ to find the sought Gr\"obner basis, some computing time is wasted on reductions to zero. We use known results about the first syzygy module of $F_r(M)$ to refine the $F_5$ algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In particular, in the case $r=n-2$, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding complexity analysis which improves upon the previously known estimates.
Quantum subspace diagonalization methods are an exciting new class of algorithms for solving large\rev{-}scale eigenvalue problems using quantum computers. Unfortunately, these methods require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pair corrupted by a non-negligible amount of noise that is far above the machine precision. Despite pessimistic predictions from classical \rev{worst-case} perturbation theories, these methods can perform reliably well if the generalized eigenvalue problem is solved using a standard truncation strategy. By leveraging and advancing classical results in matrix perturbation theory, we provide a theoretical analysis of this surprising phenomenon, proving that under certain natural conditions, a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix. We give numerical experiments demonstrating the effectiveness of the theory and providing practical guidance for the choice of truncation level. Our new results can also be of independent interest to solving eigenvalue problems outside the context of quantum computation.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by Jeong et al. by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.