亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model's performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code at //github.com/CuriosAI/dac-dev.

相關內容

Residual neural networks are state-of-the-art deep learning models. Their continuous-depth analog, neural ordinary differential equations (ODEs), are also widely used. Despite their success, the link between the discrete and continuous models still lacks a solid mathematical foundation. In this article, we take a step in this direction by establishing an implicit regularization of deep residual networks towards neural ODEs, for nonlinear networks trained with gradient flow. We prove that if the network is initialized as a discretization of a neural ODE, then such a discretization holds throughout training. Our results are valid for a finite training time, and also as the training time tends to infinity provided that the network satisfies a Polyak-Lojasiewicz condition. Importantly, this condition holds for a family of residual networks where the residuals are two-layer perceptrons with an overparameterization in width that is only linear, and implies the convergence of gradient flow to a global minimum. Numerical experiments illustrate our results.

Cellwise contamination remains a challenging problem for data scientists, particularly in research fields that require the selection of sparse features. Traditional robust methods may not be feasible nor efficient in dealing with such contaminated datasets. We propose CR-Lasso, a robust Lasso-type cellwise regularization procedure that performs feature selection in the presence of cellwise outliers by minimising a regression loss and cell deviation measure simultaneously. To evaluate the approach, we conduct empirical studies comparing its selection and prediction performance with several sparse regression methods. We show that CR-Lasso is competitive under the settings considered. We illustrate the effectiveness of the proposed method on real data through an analysis of a bone mineral density dataset.

Selecting an evaluation metric is fundamental to model development, but uncertainty remains about when certain metrics are preferable and why. This paper introduces the concept of resolving power to describe the ability of an evaluation metric to distinguish between binary classifiers of similar quality. This ability depends on two attributes: 1. The metric's response to improvements in classifier quality (its signal), and 2. The metric's sampling variability (its noise). The paper defines resolving power generically as a metric's sampling uncertainty scaled by its signal. The primary application of resolving power is to assess threshold-free evaluation metrics, such as the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). A simulation study compares the AUROC and the AUPRC in a variety of contexts. It finds that the AUROC generally has greater resolving power, but that the AUPRC is better when searching among high-quality classifiers applied to low prevalence outcomes. The paper concludes by proposing an empirical method to estimate resolving power that can be applied to any dataset and any initial classification model.

Many phenomena in real world social networks are interpreted as spread of influence between activated and non-activated network elements. These phenomena are formulated by combinatorial graphs, where vertices represent the elements and edges represent social ties between elements. A main problem is to study important subsets of elements (target sets or dynamic monopolies) such that their activation spreads to the entire network. In edge-weighted networks the influence between two adjacent vertices depends on the weight of their edge. In models with incentives, the main problem is to minimize total amount of incentives (called optimal target vectors) which can be offered to vertices such that some vertices are activated and their activation spreads to the whole network. Algorithmic study of target sets and vectors is a hot research field. We prove an inapproximability result for optimal target sets in edge weighted networks even for complete graphs. Some other hardness and polynomial time results are presented for optimal target vectors and degenerate threshold assignments in edge-weighted networks.

In large-scale, data-driven applications, parameters are often only known approximately due to noise and limited data samples. In this paper, we focus on high-dimensional optimization problems with linear constraints under uncertain conditions. To find high quality solutions for which the violation of the true constraints is limited, we develop a linear shrinkage method that blends random matrix theory and robust optimization principles. It aims to minimize the Frobenius distance between the estimated and the true parameter matrix, especially when dealing with a large and comparable number of constraints and variables. This data-driven method excels in simulations, showing superior noise resilience and more stable performance in both obtaining high quality solutions and adhering to the true constraints compared to traditional robust optimization. Our findings highlight the effectiveness of our method in improving the robustness and reliability of optimization in high-dimensional, data-driven scenarios.

Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to $30\%$ less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.

This paper introduces a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on the adaptation of Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals significant insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges faced by current LLMs in generating diverse and high-quality text.

We study combinatorial inequalities for various classes of set systems: matroids, polymatroids, poset antimatroids, and interval greedoids. We prove log-concavity inequalities for counting certain weighted feasible words, which generalize and extend several previous results establishing Mason conjectures for the numbers of independent sets of matroids. Notably, we prove matching equality conditions for both earlier inequalities and our extensions. In contrast with much of the previous work, our proofs are combinatorial and employ nothing but linear algebra. We use the language formulation of greedoids which allows a linear algebraic setup, which in turn can be analyzed recursively. The underlying non-commutative nature of matrices associated with greedoids allows us to proceed beyond polymatroids and prove the equality conditions. As further application of our tools, we rederive both Stanley's inequality on the number of certain linear extensions, and its equality conditions, which we then also extend to the weighted case.

With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司