亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A generalized strategy for the design of intelligent robust control systems based on quantum / soft computing technologies is described. The reliability of hybrid intelligent controllers increase by providing the ability to self-organize of imperfect knowledge bases. The main attention is paid to increasing the level of robustness of intelligent control systems in unpredictable control situations with the demonstration by illustrative examples. A SW & HW platform and support tools for a supercomputer accelerator for modeling quantum algorithms on a classical computer are described.

相關內容

軟計算(Soft Computing)致力于基于軟計算技術的系統解決方案。它提供了軟計算技術的重要成果的快速傳播,融合了進化算法和遺傳規劃、神經科學和神經網絡系統、模糊集理論和模糊系統、混沌理論和混沌系統的研究。軟計算鼓勵將軟計算技術和工具集成到日常和高級應用程序中。通過將軟計算的思想和技術與其他學科聯系起來。因此,該雜志是一個所有科學家和工程師在這個快速增長的領域從事研究和發展的國際論壇。 官網地址:

This work concerns the application of physics-informed neural networks to the modeling and control of complex robotic systems. Achieving this goal required extending Physics Informed Neural Networks to handle non-conservative effects. We propose to combine these learned models with model-based controllers originally developed with first-principle models in mind. By combining standard and new techniques, we can achieve precise control performance while proving theoretical stability bounds. These validations include real-world experiments of motion prediction with a soft robot and of trajectory tracking with a Franka Emika manipulator.

In this survey, we aim to explore the fundamental question of whether the next generation of artificial intelligence requires quantum computing. Artificial intelligence is increasingly playing a crucial role in many aspects of our daily lives and is central to the fourth industrial revolution. It is therefore imperative that artificial intelligence is reliable and trustworthy. However, there are still many issues with reliability of artificial intelligence, such as privacy, responsibility, safety, and security, in areas such as autonomous driving, healthcare, robotics, and others. These problems can have various causes, including insufficient data, biases, and robustness problems, as well as fundamental issues such as computability problems on digital hardware. The cause of these computability problems is rooted in the fact that digital hardware is based on the computing model of the Turing machine, which is inherently discrete. Notably, our findings demonstrate that digital hardware is inherently constrained in solving problems about optimization, deep learning, or differential equations. Therefore, these limitations carry substantial implications for the field of artificial intelligence, in particular for machine learning. Furthermore, although it is well known that the quantum computer shows a quantum advantage for certain classes of problems, our findings establish that some of these limitations persist when employing quantum computing models based on the quantum circuit or the quantum Turing machine paradigm. In contrast, analog computing models, such as the Blum-Shub-Smale machine, exhibit the potential to surmount these limitations.

This paper investigates the intelligent computing task-oriented computing offloading and semantic compression in mobile edge computing (MEC) systems. With the popularity of intelligent applications in various industries, terminals increasingly need to offload intelligent computing tasks with complex demands to MEC servers for computing, which is a great challenge for bandwidth and computing capacity allocation in MEC systems. Considering the accuracy requirement of intelligent computing tasks, we formulate an optimization problem of computing offloading and semantic compression. We jointly optimize the system utility which are represented as computing accuracy and task delay respectively to acquire the optimized system utility. To solve the proposed optimization problem, we decompose it into computing capacity allocation subproblem and compression offloading subproblem and obtain solutions through convex optimization and successive convex approximation. After that, the offloading decisions, computing capacity and compressed ratio are obtained in closed forms. We design the computing offloading and semantic compression algorithm for intelligent computing tasks in MEC systems then. Simulation results represent that our algorithm converges quickly and acquires better performance and resource utilization efficiency through the trend with total number of users and computing capacity compared with benchmarks.

Forward simulation-based uncertainty quantification that studies the distribution of quantities of interest (QoI) is a crucial component for computationally robust engineering design and prediction. There is a large body of literature devoted to accurately assessing statistics of QoIs, and in particular, multilevel or multifidelity approaches are known to be effective, leveraging cost-accuracy tradeoffs between a given ensemble of models. However, effective algorithms that can estimate the full distribution of QoIs are still under active development. In this paper, we introduce a general multifidelity framework for estimating the cumulative distribution function (CDF) of a vector-valued QoI associated with a high-fidelity model under a budget constraint. Given a family of appropriate control variates obtained from lower-fidelity surrogates, our framework involves identifying the most cost-effective model subset and then using it to build an approximate control variates estimator for the target CDF. We instantiate the framework by constructing a family of control variates using intermediate linear approximators and rigorously analyze the corresponding algorithm. Our analysis reveals that the resulting CDF estimator is uniformly consistent and asymptotically optimal as the budget tends to infinity, with only mild moment and regularity assumptions on the joint distribution of QoIs. The approach provides a robust multifidelity CDF estimator that is adaptive to the available budget, does not require \textit{a priori} knowledge of cross-model statistics or model hierarchy, and applies to multiple dimensions. We demonstrate the efficiency and robustness of the approach using test examples of parametric PDEs and stochastic differential equations including both academic instances and more challenging engineering problems.

A long-lasting goal of robotics research is to operate robots safely, while achieving high performance which often involves fast motions. Traditional motor-driven systems frequently struggle to balance these competing demands. Addressing this trade-off is crucial for advancing fields such as manufacturing and healthcare, where seamless collaboration between robots and humans is essential. We introduce a four degree-of-freedom (DoF) tendon-driven robot arm, powered by pneumatic artificial muscles (PAMs), to tackle this challenge. Our new design features low friction, passive compliance, and inherent impact resilience, enabling rapid, precise, high-force, and safe interactions during dynamic tasks. In addition to fostering safer human-robot collaboration, the inherent safety properties are particularly beneficial for reinforcement learning, where the robot's ability to explore dynamic motions without causing self-damage is crucial. We validate our robotic arm through various experiments, including long-term dynamic motions, impact resilience tests, and assessments of its ease of control. On a challenging dynamic table tennis task, we further demonstrate our robot's capabilities in rapid and precise movements. By showcasing our new design's potential, we aim to inspire further research on robotic systems that balance high performance and safety in diverse tasks. Our open-source hardware design, software, and a large dataset of diverse robot motions can be found at \link{//webdav.tuebingen.mpg.de/pamy2/}{webdav.tuebingen.mpg.de/pamy2/}.

Time-series clustering serves as a powerful data mining technique for time-series data in the absence of prior knowledge about clusters. A large amount of time-series data with large size has been acquired and used in various research fields. Hence, clustering method with low computational cost is required. Given that a quantum-inspired computing technology, such as a simulated annealing machine, surpasses conventional computers in terms of fast and accurately solving combinatorial optimization problems, it holds promise for accomplishing clustering tasks that are challenging to achieve using existing methods. This study proposes a novel time-series clustering method that leverages an annealing machine. The proposed method facilitates an even classification of time-series data into clusters close to each other while maintaining robustness against outliers. Moreover, its applicability extends to time-series images. We compared the proposed method with a standard existing method for clustering an online distributed dataset. In the existing method, the distances between each data are calculated based on the Euclidean distance metric, and the clustering is performed using the k-means++ method. We found that both methods yielded comparable results. Furthermore, the proposed method was applied to a flow measurement image dataset containing noticeable noise with a signal-to-noise ratio of approximately 1. Despite a small signal variation of approximately 2%, the proposed method effectively classified the data without any overlap among the clusters. In contrast, the clustering results by the standard existing method and the conditional image sampling (CIS) method, a specialized technique for flow measurement data, displayed overlapping clusters. Consequently, the proposed method provides better results than the other two methods, demonstrating its potential as a superior clustering method.

Seaweed biomass offers significant potential for climate mitigation, but large-scale, autonomous open-ocean farms are required to fully exploit it. Such farms typically have low propulsion and are heavily influenced by ocean currents. We want to design a controller that maximizes seaweed growth over months by taking advantage of the non-linear time-varying ocean currents for reaching high-growth regions. The complex dynamics and underactuation make this challenging even when the currents are known. This is even harder when only short-term imperfect forecasts with increasing uncertainty are available. We propose a dynamic programming-based method to efficiently solve for the optimal growth value function when true currents are known. We additionally present three extensions when as in reality only forecasts are known: (1) our methods resulting value function can be used as feedback policy to obtain the growth-optimal control for all states and times, allowing closed-loop control equivalent to re-planning at every time step hence mitigating forecast errors, (2) a feedback policy for long-term optimal growth beyond forecast horizons using seasonal average current data as terminal reward, and (3) a discounted finite-time Dynamic Programming (DP) formulation to account for increasing ocean current estimate uncertainty. We evaluate our approach through 30-day simulations of floating seaweed farms in realistic Pacific Ocean current scenarios. Our method demonstrates an achievement of 95.8% of the best possible growth using only 5-day forecasts. This confirms the feasibility of using low-power propulsion and optimal control for enhanced seaweed growth on floating farms under real-world conditions.

Quantum programs exhibit inherent non-deterministic behavior, which poses more significant challenges for error discovery compared to classical programs. While several testing methods have been proposed for quantum programs, they often overlook fundamental questions in black-box testing. In this paper, we bridge this gap by presenting three novel algorithms specifically designed to address the challenges of equivalence, identity, and unitarity checking in black-box testing of quantum programs. We also explore optimization techniques for these algorithms, including specialized versions for equivalence and unitarity checking, and provide valuable insights into parameter selection to maximize performance and effectiveness. To evaluate the effectiveness of our proposed methods, we conducted comprehensive experimental evaluations, which demonstrate that our methods can rigorously perform equivalence, identity, and unitarity checking, offering robust support for black-box testing of quantum programs.

Perception systems operate as a subcomponent of the general autonomy stack, and perception system designers often need to optimize performance characteristics while maintaining safety with respect to the overall closed-loop system. For this reason, it is useful to distill high-level safety requirements into component-level requirements on the perception system. In this work, we focus on efficiently determining sets of safe perception system performance characteristics given a black-box simulator of the fully-integrated, closed-loop system. We combine the advantages of common black-box estimation techniques such as Gaussian processes and threshold bandits to develop a new estimation method, which we call smoothing bandits. We demonstrate our method on a vision-based aircraft collision avoidance problem and show improvements in terms of both accuracy and efficiency over the Gaussian process and threshold bandit baselines.

Entropy measures quantify the amount of information and correlations present in a quantum system. In practice, when the quantum state is unknown and only copies thereof are available, one must resort to the estimation of such entropy measures. Here we propose a variational quantum algorithm for estimating the von Neumann and R\'enyi entropies, as well as the measured relative entropy and measured R\'enyi relative entropy. Our approach first parameterizes a variational formula for the measure of interest by a quantum circuit and a classical neural network, and then optimizes the resulting objective over parameter space. Numerical simulations of our quantum algorithm are provided, using a noiseless quantum simulator. The algorithm provides accurate estimates of the various entropy measures for the examples tested, which renders it as a promising approach for usage in downstream tasks.

北京阿比特科技有限公司