亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nonconvex-nonconcave minimax optimization has gained widespread interest over the last decade. However, most existing work focuses on variants of gradient descent-ascent (GDA) algorithms, which are only applicable in smooth nonconvex-concave settings. To address this limitation, we propose a novel algorithm named smoothed proximal linear descent-ascent (smoothed PLDA), which can effectively handle a broad range of structured nonsmooth nonconvex-nonconcave minimax problems. Specifically, we consider the setting where the primal function has a nonsmooth composite structure and the dual function possesses the Kurdyka-\L{}ojasiewicz (K\L{}) property with exponent $\theta \in [0,1)$. We introduce a novel convergence analysis framework for smoothed PLDA, the key components of which are our newly developed nonsmooth primal error bound and dual error bound properties. Using this framework, we show that smoothed PLDA can find both $\epsilon$-game-stationary points and $\epsilon$-optimization-stationary points of the problems of interest in $\mathcal{O}(\epsilon^{-2\max\{2\theta,1\}})$ iterations. Furthermore, when $\theta \in [0,1/2]$, smoothed PLDA achieves the optimal iteration complexity of $\mathcal{O}(\epsilon^{-2})$. To further demonstrate the effectiveness and wide applicability of our analysis framework, we show that certain max-structure problem possesses the K\L{} property with exponent $\theta=0$ under mild assumptions. As a by-product, we establish algorithm-independent quantitative relationships among various stationarity concepts, which may be of independent interest.

相關內容

We propose a general purpose confidence interval procedure (CIP) for statistical functionals constructed using data from a stationary time series. The procedures we propose are based on derived distribution-free analogues of the $\chi^2$ and Student's $t$ random variables for the statistical functional context, and hence apply in a wide variety of settings including quantile estimation, gradient estimation, M-estimation, CVAR-estimation, and arrival process rate estimation, apart from more traditional statistical settings. Like the method of subsampling, we use overlapping batches of time series data to estimate the underlying variance parameter; unlike subsampling and the bootstrap, however, we assume that the implied point estimator of the statistical functional obeys a central limit theorem (CLT) to help identify the weak asymptotics (called OB-x limits, x=I,II,III) of batched Studentized statistics. The OB-x limits, certain functionals of the Wiener process parameterized by the size of the batches and the extent of their overlap, form the essential machinery for characterizing dependence, and consequently the correctness of the proposed CIPs. The message from extensive numerical experimentation is that in settings where a functional CLT on the point estimator is in effect, using \emph{large overlapping batches} alongside OB-x critical values yields confidence intervals that are often of significantly higher quality than those obtained from more generic methods like subsampling or the bootstrap. We illustrate using examples from CVaR estimation, ARMA parameter estimation, and NHPP rate estimation; R and MATLAB code for OB-x critical values is available at~\texttt{web.ics.purdue.edu/~pasupath/}.

Subgradient methods are the natural extension to the non-smooth case of the classical gradient descent for regular convex optimization problems. However, in general, they are characterized by slow convergence rates, and they require decreasing step-sizes to converge. In this paper we propose a subgradient method with constant step-size for composite convex objectives with $\ell_1$-regularization. If the smooth term is strongly convex, we can establish a linear convergence result for the function values. This fact relies on an accurate choice of the element of the subdifferential used for the update, and on proper actions adopted when non-differentiability regions are crossed. Then, we propose an accelerated version of the algorithm, based on conservative inertial dynamics and on an adaptive restart strategy, that is guaranteed to achieve a linear convergence rate in the strongly convex case. Finally, we test the performances of our algorithms on some strongly and non-strongly convex examples.

In this paper, we address two crucial challenges in the design of cell-free (CF) systems: degradation in the performance of CF systems by imperfect channel state information at the transmitter (CSIT) and high computational/signaling loads arising from the increasing number of distributed antennas and parameters to be exchanged. To mitigate the effects of imperfect CSIT, we employ rate-splitting (RS) multiple-access, which separates the messages into common and private streams. Unlike prior works, we present a clustered CF multi-user multiple-antenna framework with RS, which groups the transmit antennas in several clusters to reduce the computational and signaling loads. The proposed RS-CF system employs one common stream per cluster to exploit the network diversity. Furthermore, we propose new cluster-based linear precoders for this framework. We then devise a power allocation strategy for the common and private streams within clusters and derive closed-form expressions for the sum-rate performance of the proposed cluster-based RS-CF system. Numerical results show that the proposed clustered RS-CF system and algorithms outperform existing approaches. % in terms of the sum-rate.

In this article we perform an asymptotic analysis of parallel Bayesian logspline density estimators. Such estimators are useful for the analysis of datasets that are partitioned into subsets and stored in separate databases without the capability of accessing the full dataset from a single computer. The parallel estimator we introduce is in the spirit of a kernel density estimator introduced in recent studies. We provide a numerical procedure that produces the normalized density estimator itself in place of the sampling algorithm. We then derive an error bound for the mean integrated squared error of the full dataset posterior estimator. The error bound depends upon the parameters that arise in logspline density estimation and the numerical approximation procedure. In our analysis, we identify the choices for the parameters that result in the error bound scaling optimally in relation to the number of samples. This provides our method with increased estimation accuracy, while also minimizing the computational cost.

We introduce the notion of a Real Equation System (RES), which lifts Boolean Equation Systems (BESs) to the domain of extended real numbers. Our RESs allow arbitrary nesting of least and greatest fixed-point operators. We show that each RES can be rewritten into an equivalent RES in normal form. These normal forms provide the basis for a complete procedure to solve RESs. This employs the elimination of the fixed-point variable at the left side of an equation from its right-hand side, combined with a technique often referred to as Gau{\ss}-elimination. We illustrate how this framework can be used to verify quantitative modal formulas with alternating fixed-point operators interpreted over probabilistic labelled transition systems.

The evolutionary diversity optimization aims at finding a diverse set of solutions which satisfy some constraint on their fitness. In the context of multi-objective optimization this constraint can require solutions to be Pareto-optimal. In this paper we study how the GSEMO algorithm with additional diversity-enhancing heuristic optimizes a diversity of its population on a bi-objective benchmark problem OneMinMax, for which all solutions are Pareto-optimal. We provide a rigorous runtime analysis of the last step of the optimization, when the algorithm starts with a population with a second-best diversity, and prove that it finds a population with optimal diversity in expected time $O(n^2)$, when the problem size $n$ is odd. For reaching our goal, we analyse the random walk of the population, which reflects the frequency of changes in the population and their outcomes.

In this paper, we consider the decentralized, stochastic nonconvex strongly-concave (NCSC) minimax problem with nonsmooth regularization terms on both primal and dual variables, wherein a network of $m$ computing agents collaborate via peer-to-peer communications. We consider when the coupling function is in expectation or finite-sum form and the double regularizers are convex functions, applied separately to the primal and dual variables. Our algorithmic framework introduces a Lagrangian multiplier to eliminate the consensus constraint on the dual variable. Coupling this with variance-reduction (VR) techniques, our proposed method, entitled VRLM, by a single neighbor communication per iteration, is able to achieve an $\mathcal{O}(\kappa^3\varepsilon^{-3})$ sample complexity under the general stochastic setting, with either a big-batch or small-batch VR option, where $\kappa$ is the condition number of the problem and $\varepsilon$ is the desired solution accuracy. With a big-batch VR, we can additionally achieve $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity. Under the special finite-sum setting, our method with a big-batch VR can achieve an $\mathcal{O}(n + \sqrt{n} \kappa^2\varepsilon^{-2})$ sample complexity and $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity, where $n$ is the number of components in the finite sum. All complexity results match the best-known results achieved by a few existing methods for solving special cases of the problem we consider. To the best of our knowledge, this is the first work which provides convergence guarantees for NCSC minimax problems with general convex nonsmooth regularizers applied to both the primal and dual variables in the decentralized stochastic setting. Numerical experiments are conducted on two machine learning problems. Our code is downloadable from //github.com/RPI-OPT/VRLM.

This paper studies online convex optimization with stochastic constraints. We propose a variant of the drift-plus-penalty algorithm that guarantees $O(\sqrt{T})$ expected regret and zero constraint violation, after a fixed number of iterations, which improves the vanilla drift-plus-penalty method with $O(\sqrt{T})$ constraint violation. Our algorithm is oblivious to the length of the time horizon $T$, in contrast to the vanilla drift-plus-penalty method. This is based on our novel drift lemma that provides time-varying bounds on the virtual queue drift and, as a result, leads to time-varying bounds on the expected virtual queue length. Moreover, we extend our framework to stochastic-constrained online convex optimization under two-point bandit feedback. We show that by adapting our algorithmic framework to the bandit feedback setting, we may still achieve $O(\sqrt{T})$ expected regret and zero constraint violation, improving upon the previous work for the case of identical constraint functions. Numerical results demonstrate our theoretical results.

Delays and asynchrony are inevitable in large-scale machine-learning problems where communication plays a key role. As such, several works have extensively analyzed stochastic optimization with delayed gradients. However, as far as we are aware, no analogous theory is available for min-max optimization, a topic that has gained recent popularity due to applications in adversarial robustness, game theory, and reinforcement learning. Motivated by this gap, we examine the performance of standard min-max optimization algorithms with delayed gradient updates. First, we show (empirically) that even small delays can cause prominent algorithms like Extra-gradient (\texttt{EG}) to diverge on simple instances for which \texttt{EG} guarantees convergence in the absence of delays. Our empirical study thus suggests the need for a careful analysis of delayed versions of min-max optimization algorithms. Accordingly, under suitable technical assumptions, we prove that Gradient Descent-Ascent (\texttt{GDA}) and \texttt{EG} with delayed updates continue to guarantee convergence to saddle points for convex-concave and strongly convex-strongly concave settings. Our complexity bounds reveal, in a transparent manner, the slow-down in convergence caused by delays.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司