亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a way to create small yet difficult model counting instances. Our generator is highly parameterizable: the number of variables of the instances it produces, as well as their number of clauses and the number of literals in each clause, can all be set to any value. Our instances have been tested on state of the art model counters, against other difficult model counting instances, in the Model Counting Competition. The smallest unsolved instances of the competition, both in terms of number of variables and number of clauses, were ours. We also observe a peak of difficulty when fixing the number of variables and varying the number of clauses, in both random instances and instances built by our generator. Using these results, we predict the parameter values for which the hardest to count instances will occur.

相關內容

Probabilistic predictions can be evaluated through comparisons with observed label frequencies, that is, through the lens of calibration. Recent scholarship on algorithmic fairness has started to look at a growing variety of calibration-based objectives under the name of multi-calibration but has still remained fairly restricted. In this paper, we explore and analyse forms of evaluation through calibration by making explicit the choices involved in designing calibration scores. We organise these into three grouping choices and a choice concerning the agglomeration of group errors. This provides a framework for comparing previously proposed calibration scores and helps to formulate novel ones with desirable mathematical properties. In particular, we explore the possibility of grouping datapoints based on their input features rather than on predictions and formally demonstrate advantages of such approaches. We also characterise the space of suitable agglomeration functions for group errors, generalising previously proposed calibration scores. Complementary to such population-level scores, we explore calibration scores at the individual level and analyse their relationship to choices of grouping. We draw on these insights to introduce and axiomatise fairness deviation measures for population-level scores. We demonstrate that with appropriate choices of grouping, these novel global fairness scores can provide notions of (sub-)group or individual fairness.

Reliability of machine learning evaluation -- the consistency of observed evaluation scores across replicated model training runs -- is affected by several sources of nondeterminism which can be regarded as measurement noise. Current tendencies to remove noise in order to enforce reproducibility of research results neglect inherent nondeterminism at the implementation level and disregard crucial interaction effects between algorithmic noise factors and data properties. This limits the scope of conclusions that can be drawn from such experiments. Instead of removing noise, we propose to incorporate several sources of variance, including their interaction with data properties, into an analysis of significance and reliability of machine learning evaluation, with the aim to draw inferences beyond particular instances of trained models. We show how to use linear mixed effects models (LMEMs) to analyze performance evaluation scores, and to conduct statistical inference with a generalized likelihood ratio test (GLRT). This allows us to incorporate arbitrary sources of noise like meta-parameter variations into statistical significance testing, and to assess performance differences conditional on data properties. Furthermore, a variance component analysis (VCA) enables the analysis of the contribution of noise sources to overall variance and the computation of a reliability coefficient by the ratio of substantial to total variance.

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

The pandemic COVID-19 disease has had a dramatic impact on almost all countries around the world so that many hospitals have been overwhelmed with Covid-19 cases. As medical resources are limited, deciding on the proper allocation of these resources is a very crucial issue. Besides, uncertainty is a major factor that can affect decisions, especially in medical fields. To cope with this issue, we use fuzzy logic (FL) as one of the most suitable methods in modeling systems with high uncertainty and complexity. We intend to make use of the advantages of FL in decisions on cases that need to treat in ICU. In this study, an interval type-2 fuzzy expert system is proposed for prediction of ICU admission in COVID-19 patients. For this prediction task, we also developed an adaptive neuro-fuzzy inference system (ANFIS). Finally, the results of these fuzzy systems are compared to some well-known classification methods such as Naive Bayes (NB), Case-Based Reasoning (CBR), Decision Tree (DT), and K Nearest Neighbor (KNN). The results show that the type-2 fuzzy expert system and ANFIS models perform competitively in terms of accuracy and F-measure compared to the other system modeling techniques.

Text-guided generative diffusion models unlock powerful image creation and editing tools. While these have been extended to video generation, current approaches that edit the content of existing footage while retaining structure require expensive re-training for every input or rely on error-prone propagation of image edits across frames. In this work, we present a structure and content-guided video diffusion model that edits videos based on visual or textual descriptions of the desired output. Conflicts between user-provided content edits and structure representations occur due to insufficient disentanglement between the two aspects. As a solution, we show that training on monocular depth estimates with varying levels of detail provides control over structure and content fidelity. Our model is trained jointly on images and videos which also exposes explicit control of temporal consistency through a novel guidance method. Our experiments demonstrate a wide variety of successes; fine-grained control over output characteristics, customization based on a few reference images, and a strong user preference towards results by our model.

In defect prediction community, many defect prediction models have been proposed and indeed more new models are continuously being developed. However, there is no consensus on how to evaluate the performance of a newly proposed model. In this paper, we aim to propose MATTER, a fraMework towArd a consisTenT pErformance compaRison, which makes model performance directly comparable across different studies. We take three actions to build a consistent evaluation framework for defect prediction models. First, we propose a simple and easy-to-use unsupervised baseline model ONE (glObal baseliNe modEl) to provide "a single point of comparison". Second, we propose using the SQA-effort-aligned threshold setting to make a fair comparison. Third, we suggest reporting the evaluation results in a unified way and provide a set of core performance indicators for this purpose, thus enabling an across-study comparison to attain real progress. The experimental results show that MATTER can serve as an effective framework to support a consistent performance evaluation for defect prediction models and hence can help determine whether a newly proposed defect prediction model is practically useful for practitioners and inform the real progress in the road of defect prediction. Furthermore, when applying MATTER to evaluate the representative defect prediction models proposed in recent years, we find that most of them (if not all) are not superior to the simple baseline model ONE in terms of the SQA-effort awareness prediction performance. This reveals that the real progress in defect prediction has been overestimated. We hence recommend that, in future studies, when any new defect prediction model is proposed, MATTER should be used to evaluate its actual usefulness (on the same benchmark test data sets) to advance scientific progress in defect prediction.

Deep learning (DL) plays a more and more important role in our daily life due to its competitive performance in industrial application domains. As the core of DL-enabled systems, deep neural networks (DNNs) need to be carefully evaluated to ensure the produced models match the expected requirements. In practice, the \emph{de facto standard} to assess the quality of DNNs in the industry is to check their performance (accuracy) on a collected set of labeled test data. However, preparing such labeled data is often not easy partly because of the huge labeling effort, i.e., data labeling is labor-intensive, especially with the massive new incoming unlabeled data every day. Recent studies show that test selection for DNN is a promising direction that tackles this issue by selecting minimal representative data to label and using these data to assess the model. However, it still requires human effort and cannot be automatic. In this paper, we propose a novel technique, named \textit{Aries}, that can estimate the performance of DNNs on new unlabeled data using only the information obtained from the original test data. The key insight behind our technique is that the model should have similar prediction accuracy on the data which have similar distances to the decision boundary. We performed a large-scale evaluation of our technique on two famous datasets, CIFAR-10 and Tiny-ImageNet, four widely studied DNN models including ResNet101 and DenseNet121, and 13 types of data transformation methods. Results show that the estimated accuracy by \textit{Aries} is only 0.03\% -- 2.60\% off the true accuracy. Besides, \textit{Aries} also outperforms the state-of-the-art labeling-free methods in 50 out of 52 cases and selection-labeling-based methods in 96 out of 128 cases.

In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks that need careful consideration. Typically, model selection and evaluation are strictly separated endeavors, splitting the sample at hand into a training, validation, and evaluation set, and only compute a single confidence interval for the prediction performance of the final selected model. We however propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set by interpreting the selection problem as a simultaneous inference problem. We use bootstrap tilting and a maxT-type multiplicity correction. The approach is universally applicable for any combination of prediction models, any model selection strategy, and any prediction performance measure that accepts weights. We conducted various simulation experiments which show that our proposed approach yields lower confidence bounds that are at least comparably good as bounds from standard approaches, and that reliably reach the nominal coverage probability. In addition, especially when sample size is small, our proposed approach yields better performing prediction models than the default selection of only one model for evaluation does.

In this paper, we study two problems: determining action model equivalence and minimizing the event space of an action model under certain structural relationships. The Kripke model equivalence is perfectly caught by the structural relationship called bisimulation. In this paper, we propose the generalized action emulation perfectly catching the action model equivalence. Previous structural relationships sufficient for the action model equivalence, i.e. the bisimulation, the propositional action emulation, the action emulation, and the action emulation of canonical action models, can be described by various restricted versions of the generalized action emulation. We summarize four critical properties of the atom set over preconditions, and prove that any formula set satisfying these properties can be used to restrict the generalized action emulation to determine the action model equivalence by an iteration algorithm. We also construct a new formula set with these four properties, which is generally more efficient than the atom set. The technique of the partition refinement has been used to minimize the world space of a Kripke model under the bisimulation. Applying the partition refinement to action models allows one to minimize their event spaces under the bisimulation. The propositional action emulation is weaker than bismulation but still sufficient for the action model equivalence. We prove that it is PSPACE-complete to minimize the event space of an action model under the propositional action emulation, and provide a PSPACE algorithm for it. Finally, we prove that minimize the event space under the action model equivalence is PSPACE-hard, and propose a computable method based on the canonical formulas of modal logics to solve this problem.

Causal inference on populations embedded in social networks poses technical challenges, since the typical no interference assumption may no longer hold. For instance, in the context of social research, the outcome of a study unit will likely be affected by an intervention or treatment received by close neighbors. While inverse probability-of-treatment weighted (IPW) estimators have been developed for this setting, they are often highly inefficient. In this work, we assume that the network is a union of disjoint components and propose doubly robust (DR) estimators combining models for treatment and outcome that are consistent and asymptotically normal if either model is correctly specified. We present empirical results that illustrate the DR property and the efficiency gain of DR over IPW estimators when both the outcome and treatment models are correctly specified. Simulations are conducted for networks with equal and unequal component sizes and outcome data with and without a multilevel structure. We apply these methods in an illustrative analysis using the Add Health network, examining the impact of maternal college education on adolescent school performance, both direct and indirect.

北京阿比特科技有限公司