In this work, we present CEDR, a Compiler-integrated, Extensible Domain Specific System on Chip Runtime ecosystem to facilitate research towards addressing the challenges of architecture, system software and application development with distinct plug-and-play integration points in a unified compile time and run time workflow. We demonstrate the utility of CEDR on the Xilinx Zynq MPSoC-ZCU102 for evaluating performance of pre-silicon hardware in the trade space of SoC configuration, scheduling policy and workload complexity based on dynamically arriving workload scenarios composed of real-life signal processing applications scaling to thousands of application instances with FFT and matrix multiply accelerators. We provide insights into the trade-offs present in this design space through a number of distinct case studies. CEDR is portable and has been deployed and validated on Odroid-XU3, X86 and Nvidia Jetson Xavier based SoC platforms. Taken together, CEDR is a capable environment for enabling research in exploring the boundaries of productive application development, resource management heuristic development, and hardware configuration analysis for heterogeneous architectures.
Many organisations have a large network of connected computers, which at times may be idle. These could be used to run larger data processing problems were it not for the difficulty of organising and managing the deployment of such applications. ClusterBuilder is designed to make this task much simpler. ClusterBuilder uses its own Domain Specific Language (DSL) to describe the processing required that removes the need for a deep understanding of parallel programming techniques. The application uses extant sequential data objects which are then invoked in a parallel manner. ClusterBuilder uses robust software components and the created architecture is proved to be correct and free from deadlock and livelock. The performance of the system is demonstrated using the Mandelbrot set, which is executed on both a single multi-core processor and a cluster of workstations. It is shown that the cluster-based system has better performance characteristics than a multi-core processor solution.
Graph Neural Networks (GNNs) have achieved great success in various graph mining tasks.However, drastic performance degradation is always observed when a GNN is stacked with many layers. As a result, most GNNs only have shallow architectures, which limits their expressive power and exploitation of deep neighborhoods.Most recent studies attribute the performance degradation of deep GNNs to the \textit{over-smoothing} issue. In this paper, we disentangle the conventional graph convolution operation into two independent operations: \textit{Propagation} (\textbf{P}) and \textit{Transformation} (\textbf{T}).Following this, the depth of a GNN can be split into the propagation depth ($D_p$) and the transformation depth ($D_t$). Through extensive experiments, we find that the major cause for the performance degradation of deep GNNs is the \textit{model degradation} issue caused by large $D_t$ rather than the \textit{over-smoothing} issue mainly caused by large $D_p$. Further, we present \textit{Adaptive Initial Residual} (AIR), a plug-and-play module compatible with all kinds of GNN architectures, to alleviate the \textit{model degradation} issue and the \textit{over-smoothing} issue simultaneously. Experimental results on six real-world datasets demonstrate that GNNs equipped with AIR outperform most GNNs with shallow architectures owing to the benefits of both large $D_p$ and $D_t$, while the time costs associated with AIR can be ignored.
Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.
Algorithmic fairness plays an important role in machine learning and imposing fairness constraints during learning is a common approach. However, many datasets are imbalanced in certain label classes (e.g. "healthy") and sensitive subgroups (e.g. "older patients"). Empirically, this imbalance leads to a lack of generalizability not only of classification, but also of fairness properties, especially in over-parameterized models. For example, fairness-aware training may ensure equalized odds (EO) on the training data, but EO is far from being satisfied on new users. In this paper, we propose a theoretically-principled, yet Flexible approach that is Imbalance-Fairness-Aware (FIFA). Specifically, FIFA encourages both classification and fairness generalization and can be flexibly combined with many existing fair learning methods with logits-based losses. While our main focus is on EO, FIFA can be directly applied to achieve equalized opportunity (EqOpt); and under certain conditions, it can also be applied to other fairness notions. We demonstrate the power of FIFA by combining it with a popular fair classification algorithm, and the resulting algorithm achieves significantly better fairness generalization on several real-world datasets.
Democratization of AI involves training and deploying machine learning models across heterogeneous and potentially massive environments. Diversity of data opens up a number of possibilities to advance AI systems, but also introduces pressing concerns such as privacy, security, and equity that require special attention. This work shows that it is theoretically impossible to design a rational learning algorithm that has the ability to successfully learn across heterogeneous environments, which we decoratively call collective intelligence (CI). By representing learning algorithms as choice correspondences over a hypothesis space, we are able to axiomatize them with essential properties. Unfortunately, the only feasible algorithm compatible with all of the axioms is the standard empirical risk minimization (ERM) which learns arbitrarily from a single environment. Our impossibility result reveals informational incomparability between environments as one of the foremost obstacles for researchers who design novel algorithms that learn from multiple environments, which sheds light on prerequisites for success in critical areas of machine learning such as out-of-distribution generalization, federated learning, algorithmic fairness, and multi-modal learning.
Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.