Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
With the rapid development of the internet of things (IoT) and artificial intelligence (AI) technologies, human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment. Even though a number of surveys and review papers have been published, there is a lack of HAR overview papers focusing on healthcare applications that use wearable sensors. Therefore, we fill in the gap by presenting this overview paper. In particular, we present our projects to illustrate the system design of HAR applications for healthcare. Our projects include early mobility identification of human activities for intensive care unit (ICU) patients and gait analysis of Duchenne muscular dystrophy (DMD) patients. We cover essential components of designing HAR systems including sensor factors (e.g., type, number, and placement location), AI model selection (e.g., classical machine learning models versus deep learning models), and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR systems and propose several research opportunities for both the medical and the computer science community.
Having smart and autonomous earthmoving in mind, we explore high-performance wheel loading in a simulated environment. This paper introduces a wheel loader simulator that combines contacting 3D multibody dynamics with a hybrid continuum-particle terrain model, supporting realistic digging forces and soil displacements at real-time performance. A total of 270,000 simulations are run with different loading actions, pile slopes, and soil to analyze how they affect the loading performance. The results suggest that the preferred digging actions should preserve and exploit a steep pile slope. High digging speed favors high productivity, while energy-efficient loading requires a lower dig speed.
We propose how a developing country like Sri Lanka can benefit from privacy-enabled machine learning techniques such as Federated Learning to detect road conditions using crowd-sourced data collection and proposed the idea of implementing a Digital Twin for the national road system in Sri Lanka. Developing countries such as Sri Lanka are far behind in implementing smart road systems and smart cities compared to the developed countries. The proposed work discussed in this paper matches the UN Sustainable Development Goal (SDG) 9: "Build Resilient Infrastructure, Promote Inclusive and Sustainable Industrialization and Foster Innovation". Our proposed work discusses how the government and private sector vehicles that conduct routine trips to collect crowd-sourced data using smartphone devices to identify the road conditions and detect where the potholes, surface unevenness (roughness), and other major distresses are located on the roads. We explore Mobile Edge Computing (MEC) techniques that can bring machine learning intelligence closer to the edge devices where produced data is stored and show how the applications of Federated Learning can be made to detect and improve road conditions. During the second phase of this study, we plan to implement a Digital Twin for the road system in Sri Lanka. We intend to use data provided by both Dedicated and Non-Dedicated systems in the proposed Digital Twin for the road system. As of writing this paper, and best to our knowledge, there is no Digital Twin system implemented for roads and other infrastructure systems in Sri Lanka. The proposed Digital Twin will be one of the first implementations of such systems in Sri Lanka. Lessons learned from this pilot project will benefit other developing countries who wish to follow the same path and make data-driven decisions.
In this paper we refer to the Open Web to the set of services offered freely to Internet users, representing a pillar of modern societies. Despite its importance for society, it is unknown how the COVID-19 pandemic is affecting the Open Web. In this paper, we address this issue, focusing our analysis on Spain, one of the countries which have been most impacted by the pandemic. On the one hand, we study the impact of the pandemic in the financial backbone of the Open Web, the online advertising business. To this end, we leverage concepts from Supply-Demand economic theory to perform a careful analysis of the elasticity in the supply of ad-spaces to the financial shortage of the online advertising business and its subsequent reduction in ad spaces' price. On the other hand, we analyze the distribution of the Open Web composition across business categories and its evolution during the COVID-19 pandemic. These analyses are conducted between Jan 1st and Dec 31st, 2020, using a reference dataset comprising information from more than 18 billion ad spaces. Our results indicate that the Open Web has experienced a moderate shift in its composition across business categories. However, this change is not produced by the financial shortage of the online advertising business, because as our analysis shows, the Open Web's supply of ad spaces is inelastic (i.e., insensitive) to the sustained low-price of ad spaces during the pandemic. Instead, existing evidence suggests that the reported shift in the Open Web composition is likely due to the change in the users' online behavior (e.g., browsing and mobile apps utilization patterns).
Smart farming is a recent innovation in the agriculture sector that can improve the agricultural yield by using smarter, automated, and data driven farm processes that interact with IoT devices deployed on farms. A cloud-fog infrastructure provides an effective platform to execute IoT applications. While fog computing satisfies the real-time processing need of delay-sensitive IoT services by bringing virtualized services closer to the IoT devices, cloud computing allows execution of applications with higher computational requirements. The deployment of IoT applications is a critical challenge as cloud and fog nodes vary in terms of their resource availability and use different cost models. Moreover, diversity in resource, quality of service (QoS) and security requirements of IoT applications make the problem even more complex. In this paper, we model IoT application placement as an optimization problem that aims at minimizing the cost while satisfying the QoS and security constraints. The problem is formulated using Integer Linear Programming (ILP). The ILP model is evaluated for a small-scale scenario. The evaluation shows the impact of QoS and security requirement on the cost. We also study the impact of relaxing security constraint on the placement decision.
Smartphone technology has drastically improved over the past decade. These improvements have seen the creation of specialized health applications, which offer consumers a range of health-related activities such as tracking and checking symptoms of health conditions or diseases through their smartphones. We term these applications as Symptom Checking apps or simply SymptomCheckers. Due to the sensitive nature of the private data they collect, store and manage, leakage of user information could result in significant consequences. In this paper, we use a combination of techniques from both static and dynamic analysis to detect, trace and categorize security and privacy issues in 36 popular SymptomCheckers on Google Play. Our analyses reveal that SymptomCheckers request a significantly higher number of sensitive permissions and embed a higher number of third-party tracking libraries for targeted advertisements and analytics exploiting the privileged access of the SymptomCheckers in which they exist, as a mean of collecting and sharing critically sensitive data about the user and their device. We find that these are sharing the data that they collect through unencrypted plain text to the third-party advertisers and, in some cases, to malicious domains. The results reveal that the exploitation of SymptomCheckers is present in popular apps, still readily available on Google Play.
Mechanically ventilated patients typically exhibit abnormal respiratory sounds. Squawks are short inspiratory adventitious sounds that may occur in patients with pneumonia, such as COVID-19 patients. In this work we devised a method for squawk detection in mechanically ventilated patients by developing algorithms for respiratory cycle estimation, squawk candidate identification, feature extraction, and clustering. The best classifier reached an F1 of 0.48 at the sound file level and an F1 of 0.66 at the recording session level. These preliminary results are promising, as they were obtained in noisy environments. This method will give health professionals a new feature to assess the potential deterioration of critically ill patients.
Contemporary mobile applications (apps) are designed to track, use, and share users' data, often without their consent, which results in potential privacy and transparency issues. To investigate whether mobile apps have always been (non-)transparent regarding how they collect information about users, we perform a longitudinal analysis of the historical versions of 268 Android apps. These apps comprise 5,240 app releases or versions between 2008 and 2016. We detect inconsistencies between apps' behaviors and the stated use of data collection in privacy policies to reveal compliance issues. We utilize machine learning techniques for the classification of the privacy policy text to identify the purported practices that collect and/or share users' personal information, such as phone numbers and email addresses. We then uncover the data leaks of an app through static and dynamic analysis. Over time, our results show a steady increase in the number of apps' data collection practices that are undisclosed in the privacy policies. This behavior is particularly troubling since privacy policy is the primary tool for describing the app's privacy protection practices. We find that newer versions of the apps are likely to be more non-compliant than their preceding versions. The discrepancies between the purported and the actual data practices show that privacy policies are often incoherent with the apps' behaviors, thus defying the 'notice and choice' principle when users install apps.
This paper investigates to identify the requirement and the development of machine learning-based mobile big data analysis through discussing the insights of challenges in the mobile big data (MBD). Furthermore, it reviews the state-of-the-art applications of data analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently adopted methods of data analysis are reviewed. Three typical applications of MBD analysis, namely wireless channel modeling, human online and offline behavior analysis, and speech recognition in the internet of vehicles, are introduced respectively. Finally, we summarize the main challenges and future development directions of mobile big data analysis.
Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.