亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the following well-studied problem of metric distortion in social choice. Suppose we have an election with $n$ voters and $m$ candidates located in a shared metric space. We would like to design a voting rule that chooses a candidate whose average distance to the voters is small. However, instead of having direct access to the distances in the metric space, the voting rule obtains, from each voter, a ranked list of the candidates in order of distance. Can we design a rule that regardless of the election instance and underlying metric space, chooses a candidate whose cost differs from the true optimum by only a small factor (known as the distortion)? A long line of work culminated in finding optimal deterministic voting rules with metric distortion $3$. However, for randomized voting rules, there is still a gap in our understanding: Even though the best lower bound is $2.112$, the best upper bound is still $3$, attained even by simple rules such as Random Dictatorship. Finding a randomized rule that guarantees distortion $3 - \epsilon$ has been a major challenge in computational social choice, as prevalent approaches to designing voting rules are known to be insufficient. Such a voting rule must use information beyond aggregate comparisons between pairs of candidates, and cannot only assign positive probability to candidates that are voters' top choices. In this work, we give a rule that guarantees distortion less than $2.753$. To do so we study a handful of voting rules that are new to the problem. One is Maximal Lotteries, a rule based on the Nash equilibrium of a natural zero-sum game which dates back to the 60's. The others are novel rules that can be thought of as hybrids of Random Dictatorship and the Copeland rule. Though none of these rules can beat distortion $3$ alone, a randomization between Maximal Lotteries and any of the novel rules can.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

We establish that a non-Gaussian nonparametric regression model is asymptotically equivalent to a regression model with Gaussian noise. The approximation is in the sense of Le Cam's deficiency distance $\Delta $; the models are then asymptotically equivalent for all purposes of statistical decision with bounded loss. Our result concerns a sequence of independent but not identically distributed observations with each distribution in the same real-indexed exponential family. The canonical parameter is a value $f(t_i)$ of a regression function $f$ at a grid point $t_i$ (nonparametric GLM). When $f$ is in a H\"{o}lder ball with exponent $\beta >\frac 12 ,$ we establish global asymptotic equivalence to observations of a signal $\Gamma (f(t))$ in Gaussian white noise, where $\Gamma $ is related to a variance stabilizing transformation in the exponential family. The result is a regression analog of the recently established Gaussian approximation for the i.i.d. model. The proof is based on a functional version of the Hungarian construction for the partial sum process.

Previous research has shown that constraining the gradient of loss function with respect to model-predicted probabilities can enhance the model robustness against noisy labels. These methods typically specify a fixed optimal threshold for gradient clipping through validation data to obtain the desired robustness against noise. However, this common practice overlooks the dynamic distribution of gradients from both clean and noisy-labeled samples at different stages of training, significantly limiting the model capability to adapt to the variable nature of gradients throughout the training process. To address this issue, we propose a simple yet effective approach called Optimized Gradient Clipping (OGC), which dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping, estimated by modeling the distributions of clean and noisy samples. This approach allows us to modify the clipping threshold at each training step, effectively controlling the influence of noise gradients. Additionally, we provide statistical analysis to certify the noise-tolerance ability of OGC. Our extensive experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of our approach.

Most pronouns are referring expressions, computers need to resolve what do the pronouns refer to, and there are divergences on pronoun usage across languages. Thus, dealing with these divergences and translating pronouns is a challenge in machine translation. Mentions are referring candidates of pronouns and have closer relations with pronouns compared to general tokens. We assume that extracting additional mention features can help pronoun translation. Therefore, we introduce an additional mention attention module in the decoder to pay extra attention to source mentions but not non-mention tokens. Our mention attention module not only extracts features from source mentions, but also considers target-side context which benefits pronoun translation. In addition, we also introduce two mention classifiers to train models to recognize mentions, whose outputs guide the mention attention. We conduct experiments on the WMT17 English-German translation task, and evaluate our models on general translation and pronoun translation, using BLEU, APT, and contrastive evaluation metrics. Our proposed model outperforms the baseline Transformer model in terms of APT and BLEU scores, this confirms our hypothesis that we can improve pronoun translation by paying additional attention to source mentions, and shows that our introduced additional modules do not have negative effect on the general translation quality.

We introduce a method for performing cross-validation without sample splitting. The method is well-suited for problems where traditional sample splitting is infeasible, such as when data are not assumed to be independently and identically distributed. Even in scenarios where sample splitting is possible, our method offers a computationally efficient alternative for estimating prediction error, achieving comparable or even lower error than standard cross-validation at a significantly reduced computational cost. Our approach constructs train-test data pairs using externally generated Gaussian randomization variables, drawing inspiration from recent randomization techniques such as data-fission and data-thinning. The key innovation lies in a carefully designed correlation structure among these randomization variables, referred to as antithetic Gaussian randomization. This correlation is crucial in maintaining a bounded variance while allowing the bias to vanish, offering an additional advantage over standard cross-validation, whose performance depends heavily on the bias-variance tradeoff dictated by the number of folds. We provide a theoretical analysis of the mean squared error of the proposed estimator, proving that as the level of randomization decreases to zero, the bias converges to zero, while the variance remains bounded and decays linearly with the number of repetitions. This analysis highlights the benefits of the antithetic Gaussian randomization over independent randomization. Simulation studies corroborate our theoretical findings, illustrating the robust performance of our cross-validated estimator across various data types and loss functions.

Photoacoustic imaging (PAI) suffers from inherent limitations that can degrade the quality of reconstructed results, such as noise, artifacts and incomplete data acquisition caused by sparse sampling or partial array detection. In this study, we proposed a new optimization method for both two-dimensional (2D) and three-dimensional (3D) PAI reconstruction results, called the regularized iteration method with shape prior. The shape prior is a probability matrix derived from the reconstruction results of multiple sets of random partial array signals in a computational imaging system using any reconstruction algorithm, such as Delay-and-Sum (DAS) and Back-Projection (BP). In the probability matrix, high-probability locations indicate high consistency among multiple reconstruction results at those positions, suggesting a high likelihood of representing the true imaging results. In contrast, low-probability locations indicate higher randomness, leaning more towards noise or artifacts. As a shape prior, this probability matrix guides the iteration and regularization of the entire array signal reconstruction results using the original reconstruction algorithm (the same algorithm for processing random partial array signals). The method takes advantage of the property that the similarity of the object to be imitated is higher than that of noise or artifact in the results reconstructed by multiple sets of random partial array signals of the entire imaging system. The probability matrix is taken as a prerequisite for improving the original reconstruction results, and the optimizer is used to further iterate the imaging results to remove noise and artifacts and improve the imaging fidelity. Especially in the case involving sparse view which brings more artifacts, the effect is remarkable. Simulation and real experiments have both demonstrated the superiority of this method.

Could an AI have conscious experiences? Any answer to this question should conform to Evidentialism - that is, it should be based not on intuition, dogma or speculation but on solid scientific evidence. I argue that such evidence is hard to come by and that the only justifiable stance on the prospects of artificial consciousness is agnosticism. In the current debate, the main division is between biological views that are sceptical of artificial consciousness and functional views that are sympathetic to it. I argue that both camps make the same mistake of over-estimating what the evidence tells us. Scientific insights into consciousness have been achieved through the study of conscious organisms. Although this has enabled cautious assessments of consciousness in various creatures, extending this to AI faces serious obstacles. AI thus presents consciousness researchers with a dilemma: either reach a verdict on artificial consciousness but violate Evidentialism; or respect Evidentialism but offer no verdict on the prospects of artificial consciousness. The dominant trend in the literature has been to take the first option while purporting to follow the scientific evidence. I argue that if we truly follow the evidence, we must take the second option and adopt agnosticism.

Phishing attacks on enterprise employees present one of the most costly and potent threats to organizations. We explore an understudied facet of enterprise phishing attacks: the email relay infrastructure behind successfully delivered phishing emails. We draw on a dataset spanning one year across thousands of enterprises, billions of emails, and over 800,000 delivered phishing attacks. Our work sheds light on the network origins of phishing emails received by real-world enterprises, differences in email traffic we observe from networks sending phishing emails, and how these characteristics change over time. Surprisingly, we find that over one-third of the phishing email in our dataset originates from highly reputable networks, including Amazon and Microsoft. Their total volume of phishing email is consistently high across multiple months in our dataset, even though the overwhelming majority of email sent by these networks is benign. In contrast, we observe that a large portion of phishing emails originate from networks where the vast majority of emails they send are phishing, but their email traffic is not consistent over time. Taken together, our results explain why no singular defense strategy, such as static blocklists (which are commonly used in email security filters deployed by organizations in our dataset), is effective at blocking enterprise phishing. Based on our offline analysis, we partnered with a large email security company to deploy a classifier that uses dynamically updated network-based features. In a production environment over a period of 4.5 months, our new detector was able to identify 3-5% more enterprise email attacks that were previously undetected by the company's existing classifiers.

A cornerstone of social choice theory is Condorcet's paradox which says that in an election where $n$ voters rank $m$ candidates it is possible that, no matter which candidate is declared the winner, a majority of voters would have preferred an alternative candidate. Instead, can we always choose a small committee of winning candidates that is preferred to any alternative candidate by a majority of voters? Elkind, Lang, and Saffidine raised this question and called such a committee a Condorcet winning set. They showed that winning sets of size $2$ may not exist, but sets of size logarithmic in the number of candidates always do. In this work, we show that Condorcet winning sets of size $6$ always exist, regardless of the number of candidates or the number of voters. More generally, we show that if $\frac{\alpha}{1 - \ln \alpha} \geq \frac{2}{k + 1}$, then there always exists a committee of size $k$ such that less than an $\alpha$ fraction of the voters prefer an alternate candidate. These are the first nontrivial positive results that apply for all $k \geq 2$. Our proof uses the probabilistic method and the minimax theorem, inspired by recent work on approximately stable committee selection. We construct a distribution over committees that performs sufficiently well (when compared against any candidate on any small subset of the voters) so that this distribution must contain a committee with the desired property in its support.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

北京阿比特科技有限公司