亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Driver distractions are known to be the dominant cause of road accidents. While monitoring systems can detect non-driving-related activities and facilitate reducing the risks, they must be accurate and efficient to be applicable. Unfortunately, state-of-the-art methods prioritize accuracy while ignoring latency because they leverage cross-view and multimodal videos in which consecutive frames are highly similar. Thus, in this paper, we pursue time-effective detection models by neglecting the temporal relation between video frames and investigate the importance of each sensing modality in detecting drives' activities. Experiments demonstrate that 1) our proposed algorithms are real-time and can achieve similar performances (97.5\% AUC-PR) with significantly reduced computation compared with video-based models; 2) the top view with the infrared channel is more informative than any other single modality. Furthermore, we enhance the DAD dataset by manually annotating its test set to enable multiclassification. We also thoroughly analyze the influence of visual sensor types and their placements on the prediction of each class. The code and the new labels will be released.

相關內容

Object permanence is the concept that objects do not suddenly disappear in the physical world. Humans understand this concept at young ages and know that another person is still there, even though it is temporarily occluded. Neural networks currently often struggle with this challenge. Thus, we introduce explicit object permanence into two stage detection approaches drawing inspiration from particle filters. At the core, our detector uses the predictions of previous frames as additional proposals for the current one at inference time. Experiments confirm the feedback loop improving detection performance by a up to 10.3 mAP with little computational overhead. Our approach is suited to extend two-stage detectors for stabilized and reliable detections even under heavy occlusion. Additionally, the ability to apply our method without retraining an existing model promises wide application in real-world tasks.

Fuzzy rough sets are well-suited for working with vague, imprecise or uncertain information and have been succesfully applied in real-world classification problems. One of the prominent representatives of this theory is fuzzy-rough nearest neighbours (FRNN), a classification algorithm based on the classical k-nearest neighbours algorithm. The crux of FRNN is the indiscernibility relation, which measures how similar two elements in the data set of interest are. In this paper, we investigate the impact of this indiscernibility relation on the performance of FRNN classification. In addition to relations based on distance functions and kernels, we also explore the effect of distance metric learning on FRNN for the first time. Furthermore, we also introduce an asymmetric, class-specific relation based on the Mahalanobis distance which uses the correlation within each class, and which shows a significant improvement over the regular Mahalanobis distance, but is still beaten by the Manhattan distance. Overall, the Neighbourhood Components Analysis algorithm is found to be the best performer, trading speed for accuracy.

With the development of artificial intelligence (AI) techniques and the increasing popularity of camera-equipped devices, many edge video analytics applications are emerging, calling for the deployment of computation-intensive AI models at the network edge. Edge inference is a promising solution to move the computation-intensive workloads from low-end devices to a powerful edge server for video analytics, but the device-server communications will remain a bottleneck due to the limited bandwidth. This paper proposes a task-oriented communication framework for edge video analytics, where multiple devices collect the visual sensory data and transmit the informative features to an edge server for processing. To enable low-latency inference, this framework removes video redundancy in spatial and temporal domains and transmits minimal information that is essential for the downstream task, rather than reconstructing the videos at the edge server. Specifically, it extracts compact task-relevant features based on the deterministic information bottleneck (IB) principle, which characterizes a tradeoff between the informativeness of the features and the communication cost. As the features of consecutive frames are temporally correlated, we propose a temporal entropy model (TEM) to reduce the bitrate by taking the previous features as side information in feature encoding. To further improve the inference performance, we build a spatial-temporal fusion module at the server to integrate features of the current and previous frames for joint inference. Extensive experiments on video analytics tasks evidence that the proposed framework effectively encodes task-relevant information of video data and achieves a better rate-performance tradeoff than existing methods.

Deep learning models have been developed for a variety of tasks and are deployed every day to work in real conditions. Some of these tasks are critical and models need to be trusted and safe, e.g. military communications or cancer diagnosis. These models are given real data, simulated data or combination of both and are trained to be highly predictive on them. However, gathering enough real data or simulating them to be representative of all the real conditions is: costly, sometimes impossible due to confidentiality and most of the time impossible. Indeed, real conditions are constantly changing and sometimes are intractable. A solution is to deploy machine learning models that are able to give predictions when they are confident enough otherwise raise a flag or abstain. One issue is that standard models easily fail at detecting out-of-distribution samples where their predictions are unreliable. We present here TrustGAN, a generative adversarial network pipeline targeting trustness. It is a deep learning pipeline which improves a target model estimation of the confidence without impacting its predictive power. The pipeline can accept any given deep learning model which outputs a prediction and a confidence on this prediction. Moreover, the pipeline does not need to modify this target model. It can thus be easily deployed in a MLOps (Machine Learning Operations) setting. The pipeline is applied here to a target classification model trained on MNIST data to recognise numbers based on images. We compare such a model when trained in the standard way and with TrustGAN. We show that on out-of-distribution samples, here FashionMNIST and CIFAR10, the estimated confidence is largely reduced. We observe similar conclusions for a classification model trained on 1D radio signals from AugMod, tested on RML2016.04C. We also publicly release the code.

Malicious attackers can generate targeted adversarial examples by imposing tiny noises, forcing neural networks to produce specific incorrect outputs. With cross-model transferability, network models remain vulnerable even in black-box settings. Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples. To further enhance transferability, model augmentation methods aim to produce more networks participating in the ensemble. However, existing model augmentation methods are only proven effective in untargeted attacks. In this work, we propose Diversified Weight Pruning (DWP), a novel model augmentation technique for generating transferable targeted attacks. DWP leverages the weight pruning method commonly used in model compression. Compared with prior work, DWP protects necessary connections and ensures the diversity of the pruned models simultaneously, which we show are crucial for targeted transferability. Experiments on the ImageNet-compatible dataset under various and more challenging scenarios confirm the effectiveness: transferring to adversarially trained models, Non-CNN architectures, and Google Cloud Vision. The results show that our proposed DWP improves the targeted attack success rates with up to $10.1$%, $6.6$%, and $7.0$% on the combination of state-of-the-art methods, respectively. The source code will be made available after acceptance.

Leveraging transfer learning has recently been shown to be an effective strategy for training large models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that linear regression is much more effective than logistic regression from both privacy and computational aspects, especially at stricter epsilon values ($\epsilon < 1$). On the optimization side, we also explore using Newton's method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is effective at lower epsilons while Newton's method is effective at larger epsilon values. To combine the benefits of both, we propose a novel algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all $\epsilon$ values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of $\epsilon$ typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88\% under (8, $8 * 10^{-7}$)-DP and 84.3\% under (0.1, $8 * 10^{-7}$)-DP.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司