亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The simultaneous estimation of many parameters based on data collected from corresponding studies is a key research problem that has received renewed attention in the high-dimensional setting. Many practical situations involve heterogeneous data where heterogeneity is captured by a nuisance parameter. Effectively pooling information across samples while correctly accounting for heterogeneity presents a significant challenge in large-scale estimation problems. We address this issue by introducing the "Nonparametric Empirical Bayes Structural Tweedie" (NEST) estimator, which efficiently estimates the unknown effect sizes and properly adjusts for heterogeneity via a generalized version of Tweedie's formula. For the normal means problem, NEST simultaneously handles the two main selection biases introduced by heterogeneity: one, the selection bias in the mean, which cannot be effectively corrected without also correcting for, two, selection bias in the variance. Our theoretical results show that NEST has strong asymptotic properties without requiring explicit assumptions about the prior. Extensions to other two-parameter members of the exponential family are discussed. Simulation studies show that NEST outperforms competing methods, with much efficiency gains in many settings. The proposed method is demonstrated on estimating the batting averages of baseball players and Sharpe ratios of mutual fund returns.

相關內容

It is common practice to use Laplace approximations to compute marginal likelihoods in Bayesian versions of generalised linear models (GLM). Marginal likelihoods combined with model priors are then used in different search algorithms to compute the posterior marginal probabilities of models and individual covariates. This allows performing Bayesian model selection and model averaging. For large sample sizes, even the Laplace approximation becomes computationally challenging because the optimisation routine involved needs to evaluate the likelihood on the full set of data in multiple iterations. As a consequence, the algorithm is not scalable for large datasets. To address this problem, we suggest using a version of a popular batch stochastic gradient descent (BSGD) algorithm for estimating the marginal likelihood of a GLM by subsampling from the data. We further combine the algorithm with Markov chain Monte Carlo (MCMC) based methods for Bayesian model selection and provide some theoretical results on the convergence of the estimates. Finally, we report results from experiments illustrating the performance of the proposed algorithm.

Estimation of causal effects using machine learning methods has become an active research field in econometrics. In this paper, we study the finite sample performance of meta-learners for estimation of heterogeneous treatment effects under the usage of sample-splitting and cross-fitting to reduce the overfitting bias. In both synthetic and semi-synthetic simulations we find that the performance of the meta-learners in finite samples greatly depends on the estimation procedure. The results imply that sample-splitting and cross-fitting are beneficial in large samples for bias reduction and efficiency of the meta-learners, respectively, whereas full-sample estimation is preferable in small samples. Furthermore, we derive practical recommendations for application of specific meta-learners in empirical studies depending on particular data characteristics such as treatment shares and sample size.

The issues of bias-correction and robustness are crucial in the strategy of divide-and-conquer (DC), especially for asymmetric nonparametric models with massive data. It is known that quantile-based methods can achieve the robustness, but the quantile estimation for nonparametric regression has non-ignorable bias when the error distribution is asymmetric. This paper explores a global bias-corrected DC by quantile-matched composite for nonparametric regressions with general error distributions. The proposed strategies can achieve the bias-correction and robustness, simultaneously. Unlike common DC quantile estimations that use an identical quantile level to construct a local estimator by each local machine, in the new methodologies, the local estimators are obtained at various quantile levels for different data batches, and then the global estimator is elaborately constructed as a weighted sum of the local estimators. In the weighted sum, the weights and quantile levels are well-matched such that the bias of the global estimator is corrected significantly, especially for the case where the error distribution is asymmetric. Based on the asymptotic properties of the global estimator, the optimal weights are attained, and the corresponding algorithms are then suggested. The behaviors of the new methods are further illustrated by various numerical examples from simulation experiments and real data analyses. Compared with the competitors, the new methods have the favorable features of estimation accuracy, robustness, applicability and computational efficiency.

This paper considers the problem of measure estimation under the barycentric coding model (BCM), in which an unknown measure is assumed to belong to the set of Wasserstein-2 barycenters of a finite set of known measures. Estimating a measure under this model is equivalent to estimating the unknown barycenteric coordinates. We provide novel geometrical, statistical, and computational insights for measure estimation under the BCM, consisting of three main results. Our first main result leverages the Riemannian geometry of Wasserstein-2 space to provide a procedure for recovering the barycentric coordinates as the solution to a quadratic optimization problem assuming access to the true reference measures. The essential geometric insight is that the parameters of this quadratic problem are determined by inner products between the optimal displacement maps from the given measure to the reference measures defining the BCM. Our second main result then establishes an algorithm for solving for the coordinates in the BCM when all the measures are observed empirically via i.i.d. samples. We prove precise rates of convergence for this algorithm -- determined by the smoothness of the underlying measures and their dimensionality -- thereby guaranteeing its statistical consistency. Finally, we demonstrate the utility of the BCM and associated estimation procedures in three application areas: (i) covariance estimation for Gaussian measures; (ii) image processing; and (iii) natural language processing.

Distributed Mean Estimation (DME) is a central building block in federated learning, where clients send local gradients to a parameter server for averaging and updating the model. Due to communication constraints, clients often use lossy compression techniques to compress the gradients, resulting in estimation inaccuracies. DME is more challenging when clients have diverse network conditions, such as constrained communication budgets and packet losses. In such settings, DME techniques often incur a significant increase in the estimation error leading to degraded learning performance. In this work, we propose a robust DME technique named EDEN that naturally handles heterogeneous communication budgets and packet losses. We derive appealing theoretical guarantees for EDEN and evaluate it empirically. Our results demonstrate that EDEN consistently improves over state-of-the-art DME techniques.

Recently, conditional average treatment effect (CATE) estimation has been attracting much attention due to its importance in various fields such as statistics, social and biomedical sciences. This study proposes a partially linear nonparametric Bayes model for the heterogeneous treatment effect estimation. A partially linear model is a semiparametric model that consists of linear and nonparametric components in an additive form. A nonparametric Bayes model that uses a Gaussian process to model the nonparametric component has already been studied. However, this model cannot handle the heterogeneity of the treatment effect. In our proposed model, not only the nonparametric component of the model but also the heterogeneous treatment effect of the treatment variable is modeled by a Gaussian process prior. We derive the analytic form of the posterior distribution of the CATE and prove that the posterior has the consistency property. That is, it concentrates around the true distribution. We show the effectiveness of the proposed method through numerical experiments based on synthetic data.

Recent advancements in miniaturized fluorescence microscopy have made it possible to investigate neuronal responses to external stimuli in awake behaving animals through the analysis of intra-cellular calcium signals. An on-going challenge is deconvolving the temporal signals to extract the spike trains from the noisy calcium signals' time-series. In this manuscript, we propose a nested Bayesian finite mixture specification that allows the estimation of spiking activity and, simultaneously, reconstructing the distributions of the calcium transient spikes' amplitudes under different experimental conditions. The proposed model leverages two nested layers of random discrete mixture priors to borrow information between experiments and discover similarities in the distributional patterns of neuronal responses to different stimuli. Furthermore, the spikes' intensity values are also clustered within and between experimental conditions to determine the existence of common (recurring) response amplitudes. Simulation studies and the analysis of a data set from the Allen Brain Observatory show the effectiveness of the method in clustering and detecting neuronal activities.

Generalized linear models are flexible tools for the analysis of diverse datasets, but the classical formulation requires that the parametric component is correctly specified and the data contain no atypical observations. To address these shortcomings we introduce and study a family of nonparametric full rank and lower rank spline estimators that result from the minimization of a penalized power divergence. The proposed class of estimators is easily implementable, offers high protection against outlying observations and can be tuned for arbitrarily high efficiency in the case of clean data. We show that under weak assumptions these estimators converge at a fast rate and illustrate their highly competitive performance on a simulation study and two real-data examples.

Heterogeneous treatment effect models allow us to compare treatments at subgroup and individual levels, and are of increasing popularity in applications like personalized medicine, advertising, and education. In this talk, we first survey different causal estimands used in practice, which focus on estimating the difference in conditional means. We then propose DINA, the difference in natural parameters, to quantify heterogeneous treatment effect in exponential families and the Cox model. For binary outcomes and survival times, DINA is both convenient and more practical for modeling the influence of covariates on the treatment effect. Second, we introduce a meta-algorithm for DINA, which allows practitioners to use powerful off-the-shelf machine learning tools for the estimation of nuisance functions, and which is also statistically robust to errors in inaccurate nuisance function estimation. We demonstrate the efficacy of our method combined with various machine learning base-learners on simulated and real datasets.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司