亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this 4-page manuscript we discuss the problem of long-term AI Safety from a Software Engineering (SE) research viewpoint. We briefly summarize long-term AI Safety, and the challenge of avoiding harms from AI as systems meet or exceed human capabilities, including software engineering capabilities (and approach AGI / "HLMI"). We perform a quantified literature review suggesting that AI Safety discussions are not common at SE venues. We make conjectures about how software might change with rising capabilities, and categorize "subproblems" which fit into traditional SE areas, proposing how work on similar problems might improve the future of AI and SE.

相關內容

《工程》是中國工程院(CAE)于2015年推出的國際開放存取期刊。其目的是提供一個高水平的平臺,傳播和分享工程研發的前沿進展、當前主要研究成果和關鍵成果;報告工程科學的進展,討論工程發展的熱點、興趣領域、挑戰和前景,在工程中考慮人與環境的福祉和倫理道德,鼓勵具有深遠經濟和社會意義的工程突破和創新,使之達到國際先進水平,成為新的生產力,從而改變世界,造福人類,創造新的未來。 期刊鏈接: · STOC · 稀疏 · 近似 · 相互獨立的 ·
2023 年 10 月 17 日

In this paper, we provide simpler reductions from Exact Triangle to two important problems in fine-grained complexity: Exact Triangle with Few Zero-Weight $4$-Cycles and All-Edges Sparse Triangle. Exact Triangle instances with few zero-weight $4$-cycles was considered by Jin and Xu [STOC 2023], who used it as an intermediate problem to show $3$SUM hardness of All-Edges Sparse Triangle with few $4$-cycles (independently obtained by Abboud, Bringmann and Fischer [STOC 2023]), which is further used to show $3$SUM hardness of a variety of problems, including $4$-Cycle Enumeration, Offline Approximate Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles. We provide a simple reduction from Exact Triangle to Exact Triangle with few zero-weight $4$-cycles. Our new reduction not only simplifies Jin and Xu's previous reduction, but also strengthens the conditional lower bounds from being under the $3$SUM hypothesis to the even more believable Exact Triangle hypothesis. As a result, all conditional lower bounds shown by Jin and Xu [STOC 2023] and by Abboud, Bringmann and Fischer [STOC 2023] using All-Edges Sparse Triangle with few $4$-cycles as an intermediate problem now also hold under the Exact Triangle hypothesis. We also provide two alternative proofs of the conditional lower bound of the All-Edges Sparse Triangle problem under the Exact Triangle hypothesis, which was originally proved by Vassilevska Williams and Xu [FOCS 2020]. Both of our new reductions are simpler, and one of them is also deterministic -- all previous reductions from Exact Triangle or 3SUM to All-Edges Sparse Triangle (including P\u{a}tra\c{s}cu's seminal work [STOC 2010]) were randomized.

In this work, we examine Asymmetric Shapley Values (ASV), a variant of the popular SHAP additive local explanation method. ASV proposes a way to improve model explanations incorporating known causal relations between variables, and is also considered as a way to test for unfair discrimination in model predictions. Unexplored in previous literature, relaxing symmetry in Shapley values can have counter-intuitive consequences for model explanation. To better understand the method, we first show how local contributions correspond to global contributions of variance reduction. Using variance, we demonstrate multiple cases where ASV yields counter-intuitive attributions, arguably producing incorrect results for root-cause analysis. Second, we identify generalized additive models (GAM) as a restricted class for which ASV exhibits desirable properties. We support our arguments by proving multiple theoretical results about the method. Finally, we demonstrate the use of asymmetric attributions on multiple real-world datasets, comparing the results with and without restricted model families using gradient boosting and deep learning models.

Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.

We introduce an online variant of mobile facility location (MFL) (introduced by Demaine et al. [SODA' 07]). We call this new problem online mobile facility location (OMFL). In the OMFL problem, initially, we are given a set of $k$ mobile facilities with their starting locations. One by one, requests are added. After each request arrives, one can make some changes to the facility locations before the subsequent request arrives. Each request is always assigned to the nearest facility. The cost of this assignment is the distance from the request to the facility. The objective is to minimize the total cost, which consists of the relocation cost of facilities and the distance cost of requests to their nearest facilities. We provide a lower bound for the OMFL problem that even holds on uniform metrics. A natural approach to solve the OMFL problem for general metric spaces is to utilize hierarchically well-separated trees (HSTs) and directly solve the OMFL problem on HSTs. In this paper, we provide the first step in this direction by solving a generalized variant of the OMFL problem on uniform metrics that we call G-OMFL. We devise a simple deterministic online algorithm and provide a tight analysis for the algorithm. The second step remains an open question. Inspired by the $k$-server problem, we introduce a new variant of the OMFL problem that focuses solely on minimizing movement cost. We refer to this variant as M-OMFL. Additionally, we provide a lower bound for M-OMFL that is applicable even on uniform metrics.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司